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This is the Ph.D. dissertation of Ms. Germana Peggion. Georges

Weatherly and I shared the honor to be major professor. This work

brings together knowledge from the fields of physical oceanography,

theoretical turbulence and numerical analysis. The results demonstrate

the effect of strong geostrophic eddies on the turbulent boundary layer

on the ocean floor and the effect of the turbulent regime on the eddy.

The surprising result is the different response of a cyclonic eddy vs

an anticyclonic eddy. A cyclonic eddy decays faster because the

interaction forces it to expand its size and become more susceptible to

extraction of kinetic energy by the turbulent boundary layer. The

anticyclonic eddy contracts by converting kinetic energy to potential

energy and lengthens its life.

One reason that this work is successful is the fine vertical

resolution and horizontal resolution of the model. Thus it is possible

to calculate carefully the effects of turbulence on the eddies without

the realizations being dominated by computational viscosity.
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ABSTRACT

The Benthic Boundary Layer is a region close the ocean bottom

with features distinct from the oceanic interior. Near the bottom

the ocean is turbulent and the resultant mixing leads to a neutrally

stratified bottom layer. Turbulent closure models have been applied

to investigate how the structure of the Benthic Boundary Layer is

affected by the flow and the stratification above the layer.

The object of the present research is to analyze how the

benthic region affects the dynamics of the forcing flow. More

specifically, a numerical model based on the level 2 1/2 closure

scheme of Mellor and Yamada is developed to examine the decay of

deep mesoscale eddy-like flows. "

-It is found that the decay of tt flow occurs through

conversion of kinetic to potential energy and through dissipation by

bottom friction. The relative importance of both processes is

expressed by the Rossby number e-*U/fR and by the stratification

parameter.s-N2 H2 /f2R2 (where H is the total depth of the eddy, R the

radius, U the"velocity scale, N the Brunt-Valasala frequency, and f

the Coriolis parameter). 'A larger Rossby number and stratification

parameter lead to a larger conversion of kinetic to potential

energy, but a smaller mechanical dissipation of the same energy.

Examination of the structure of the Benthic Boundary Layer

indicates that a clear distinction should be made between the mixed

layer, or the region neutrally stratified, and the Bottom Boundary

Layer, or the region where most of the turbulent activity occurs.

It is found that the structure of the Bottom Boundary Layer depends



Valso on the magnitude of the flow above the benthic region, but the

mixed layer depends also on the sign of the mesoscale activity. .'

Under a cyclonic flow, the mixed layer is defined by vertical .

advection and it is usually much thicker than the Bottom Boundary

Layer. The mixed layer of an anticyclonic flow is the result of

both vertical advection and near bottom turbulence, and the

ambiguity between the mixed layer and Bottom Boundary Layer is

notably reduced.
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uremIts of t tuz and salinity made close to the

bottom of the ocean shawed a well-mixed bottm layer a few tens of

meters thick bounded by a sharp interface above which there is a

nearly-u oly stratified region. Thie ch teristic well-mixed S

region of this enthic Boundary Layer generally does not form a pool

. or have a distinctive water mass; thus the layer is fomed by mixing

of the stratified deep ocean (Armi and D'Asaro, 1980; Amai and

Millard, 1976; Bowden, 1978; Weatherly and Niilerp 1974). The

spatial variability of the bottom region sometimes exhibits evidence

of a differential horizontal advection suggestive of forcing due to

masoscale activity. Armi and D'Asaro (1980) reported explicit

* variations in the horizontal structure of the layer with length

scales up to 20 ka. Energetic fluctuations within the mixed bottom

layer respond mainly to near-inertial and tidal frequencies. Near

the bottom there is less near-inertial energy than in the upper

lvels, but more energy in the high frequency band. Thes high

frequency velocities, which are modulated by tidal currents and by

the variations of the flow above the layer, have been considered as

measure. of the boundary layer turbulent activity (D'Asaro, 1982).

Thus a clear distinction should be mae between the mixd layer, or
F the region neutrally stratified, and the Bottom Boundary Layer (BBL)

::.:.1
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or the region where most of turbulent activity occurs.-

The dynuamic role of the BBL was first investigated in relation

with coastal and fluvial regions. Its role in sedlnmnt transport

ProcOsses is determinant Rweall,, 1983). Typically in such

regions, the near-bottom velocities are not negligible oui~ared to

the near-surface flows, and the BEL has been considered as the

dominanit mechanism by which the input of energy by winds and tides

is dissipated (Csanady, 1978).

Oni the other hand, very little is kniown about the role of the

BBL on the dynamics of the ocean circulation, and the few

Observations available are often controversial. Weatherly (1972)

indicated that bottom friction under the Florida Current is not

in~ortanto, but the same author (1984) estIiated that bottom friction

in the North Atlantic Omean may effectively dissipate the energy

input by the wind at the surface.

According to Wrtington. (1976) and the observations of

Ricardonat al. (1981), and Schmitz (1977), the general

circulation Of the deep North Atlantic Ocean is conosed of a

wll-def ined southward flow along the kimrican continental slope and

a northward flow further to the east enclosed in an anticyclonic

subtropical gyre. 'The northward and eastward flow of the gyre is

adjacent to the Gulf Streom axis, and it is a fn ntlquestion

whether or not the Gulf Streami extends to and interacts with the

ocean bottom circulation. Pacent studies (IMlley et a.,., 1982;
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Richardson, 1983; Weatherly and Kelley, 1984) supported the

hypothesis that the Gulf Stream system influences the entire water .

colum and excursion of the surface Gulf Stream affects near-bottm.

currents.

EtAloing the hypothesis that the Gulf Stream may extend to the

bottan, Clarke (1976) suggested that warm core eddies in the Slope

Water region may extend to the bottcm as well. The assuption was

supported by MCartney et al. (1978). 7he authors reported that the

structure of cold core rings appears to extend all the way to the

bottom. The vertical profile of velocity showed a cyclonic flow in

the upper levels and a level of no motion near 2000 m oL depth with a

Weak anticyclonic circulation beneath. Kelley (1984) indicated that

g energetic fluctuations with time scale of 30-90 days in the records

of near-bottom deep ocean current meters in the lowr Scotian Rise

are the results of the barotropic -upxets of Gulf Stream meanders

* and warm-core rings. Holland (1978) developed a quasi-geostrop.ic

two layer model and postulated that the deep flow might be due to

barotropic and baroclinic instabilities generated by the motion in

the upper strata of the ocean. Numerical simulations of the model

indicated that a mean flow is induced in the lower layer in the same

direction as the current in the upper layer. Schmitz and Holland

(1982) made a detailed omparison of deep ocean observation in the

Gulf Stream region with the results of Holland's model and indicated

that although the model is a crude formulation of the North

~L

*W*.~ -~ ~ - -~ ~- -A~A .. .
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Atlantic circulation, it provides a convincing explanation of the

deep high energetic circulation.

Despite the fact that all those studies have suggested that bottom

friction forces may be an efficient dissipative mechanism in the

spin-down and decay of rings, up to now this physical process has

been neglected. In general, the decay of mesoscale eddies has been

attributed to dissipation of kinetic energy either through internal -

viscous effects or through dispersive spreading of Rossby waves at

their own characteristic wave speed. Flierl (1977) examined the

decay of isolated linear vortices in absence of frictional forces and

showed that they dissipated rapidly under the dispersive effect of a

beta-plane. Mied and Lindemann (1979), McWilliams and Flierl (1979)

showed that nonlinearity stabilizes the eddies against beta-

dispersion and allows the vortices to propagate westwards as a stable

entity for longer periods of time. The decay of a ring under the

influences of momentum and bouyancy diffusion has been considered by

Molinari (1970) and Flierl (personal communication), but both authors

neglected bottom friction. Thus in these studies the primary

mechanism for the decay is the absorption of the ring in the

surrounding waters.

The aim of the present study is to investigate how bottom

friction may contribute to the decay of an isolated vortex extending

to the bottom of the ocean. Highlights of the sections in which the

work is divided are as follows:

In Section To we present the model formulation which consists

.......... I"...... '°
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of two distinct parts: cme for the flow far from the bott m, and oe

for the Benthic Boundary layer together with apropriate matching

conditions. In deriving the governing equations for the interior, we

develop the model on an f-plane and we assum that the flow is -"

incomressible and hydrostatic. In modelling the turbulent BBL

equations, we adopt a modified Mellow and Yamada level 2 1/2 closure

scheme (1982).

Section Three is the explanation of the nmerical model. C •,;u-

tational efficiency requires consideration of a two-dimensional - -

fomaton of the model. hlis is achieved by assuming that the

motion is uniform in one of the horizontal coordinates and para .-

trizing a mesoscale eddy as an infinite slab. Perhaps, the best

" justification for such a model is its wide range of applications.

Section Faur includes an application of the model for analyzing

the structure of the Benthic Boundary Layer forced by a steady flow.

* Under the assuaption that the motion is horizontally -----xroeeous,, we

verify the validity of the model by comaring results obtained for

neutrally and stably stratified flows with the correspondent values

derived by other turbulence models. When the Benthic Boundary Layer .

is forced by magoscale activity with a steady barotropic component,

the numerical experiments emphasize the different roles that the mixed

layer and BBL play in the dynamics of the system.

1"e decay of an I k ONIGousand linear vortex is presented in

SSection Five. An analytical formulation of the problem is presnted
C- -

* . .•. . -.. . ,
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and compared with the results of the numerical experiments. Since

the analytical model has been conceived as an independent entity, we

apologize for the unavoidable repetitions and the different symbols

in this section.

Section Six combines the results of Sections Four and Five, and

considers the spin-down of a stably stratified and nonlinear flow.

Under the hypothesis that the eddy is stationary, the effects of Ti

stratification and advection on its decay are analyzed. When the

eddy is assumed to be nonstationary, the study investigates how its

spin-down is affected by a uniforn and steady westward translation

Finally, Section Seven sumuarizes and discusses this research.

* ~: :;~*~ ... §~Q.: *.*~: V. j.*-*.-
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2. NOW, R~ATMW

We voside a deep eddy-like flow extending from the bottom of

the ocean to the tha=oclie. 2w eddy has radius R and total depth

". 'fie btton of the ocean is taken to be flat. The prolmis -"-".

foriwlated on an f-plane with a Cartesian coordinate system (xy,,z) "

chosen suc that in the northern hesphE~ere the x-cootdinate-

increases eastwrdst the y.-coordinate mort&*ardst and the vertical

coodinate, z, is zro at the bott and increases upwards.

We ssam that the flow is hog~neous in the n-rth-"outh

direction. 2w ocean is hydrostatic and incoressible and the

density is a linear function of e ure" alcm (Pofo:ff, 1962).

Since close to the bntwt the horizontal frictional fore due

a to turbulent mixing of mamntm c dinat, the most convenient

approech to the pioblem is throgh boundary layer theory. Thu it

is te t prent the model equations for the interior and

the BsL separately.

2.1. 'g mlo dal qluaticns for the interior flow

The equations gomwnirq the motiona are those of MMnTIUm,

mm and heat oLvation, viz:

7
*. * *-...-.b•
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(] 2.1.1a) ut + uux + wuz - fv = - U - px + (Axuxlx + Azz

(2.1.1b) Vt + uvx + WVz + fij = (AlyVx)x + N"

(2.1.1c) 0 = z - go

(2.1.1d) ux + wz  0

(2.1.1s) Tt + Ux + WT = (ATx)x + kTzT -

(2.1.1f) p = po(1 - alT - To))

e subscripts (xzt) denote partial differentiation; the

variables (u,v,w) are the conents of the eastward, poleward, and

vertical velocities respectively. The variable -n (henceforth

indicated as the displ t of the themrccline) is the barotopic -

forcing; p and T are the deviations of density and teL:eature fr o

density and etur associated with a state of rest expressed by'

the constants of reference o and To. The variable p is the '

h ostac pressure associated with the density distribution ; x

and A' and Axy are the eddy coefficients of horizontal viscosity

and conductivity respectively; v and k are the eddy coefficients of

vertical viscosity and co uctivity respectively; a is the

coefficient of thermal e vicn;g g is the gravitational

aot n, d f the Wciolis ps tec. 7

2a mtching conditions between the intericr aid the MBL

solutions provide the dissipative mdcanim that govetns the spin-

(kxn proces of the flow.

.~ ~ ~ ~ ~ ..i...,-..., ..
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Equations (2.1.1)ust be satisfied in the regionch -cz 4 H,

-x o  x c xo(x o > R). At the top of the BBL the boundazy conditions

are specified by matching the BBL and the interior solutions; at the

free surface.the heat flow is assigned and the velocities u, and v

kept equal to their relative barotropic cconents. Outside the

region of interest, the ocean is in a state of rest. The specific

conditions are:

(u'v,w) - (uvw

(2.1.2) at z -h

T T

where bar indicates the BEL solutions.

(uv) (U9,Vg)
(2.1.3) at z " H

Tz ez

(u,v) - (0,0)
h (2.1.4) at i~xo

T = T (z)

where TB(z) is the t erature distribution of the ocean at rest.
I

2.2. The model equations for the Bottom tounary Layer

Using the saw notations introduced in Section 2.1 the BBL

equations are written as follows:

( (2.2.la) + UX + g rot - At + (A ux)x- (w-r')r)-

V

. . . . . . . . . . . . . ..-..

.- .. . -:
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(2.2.1b) it + UFX + Wz + f U a(Anj~x)x - (-Wrv'r)z

(2.2.1c) 00-

In the equaions, the terms - u;uj., and - u 9' (we winl use the

usual tennor notation when it does not create ambiguities) represent

awynolds average tubulent fluxes. 7bfl equations (2.*2.1) must, be

satisfidin theregion 0 z ch,- xO-cx cxo. At the topof the

layer and at the lateral boundaries, the boundary conditions are

specified as in (2.1.2) and (2.1.4)r respectively. At the rigid

surface, the boundary conditions are specified by prescribing the

n-lip boundary condition and no flux of heat, viz.:

-UT (0,0,0)
(2.2.2) at z -0

Since we have assud that turbulence is mainly confined to the

BBL Meion,, we must require that the 1rynolds stresses vanish at

z ahe 3frmey it is not possible to have a priori knowledge

Of the DSL thickness. zeoefor nmeurical purposes, it is

conven ient to rc the apps boundary at a depth, d, derived from

observatioins and Immm, chose such that: hqdcH and asum:t



(2.2.3) uu- U.S -0 at z d

The remaining problem is to specify the Rynolds stresse, -~UII,

an, Uj a so that the equations (2.2.1) are a closed set of

equations.

2.3 7Ibe closure schem

A rigorous theory for analyzing the structure of turbulent flows

is not availablet, and most of the difficulties lie in the definition

of the turbulent fluxes. For many applications it is sufficient to

assume:

(2.3.1.) auu K u

*with the eddy coefficient K kept constant and defined from observa-

tions and Ununt.t~fortunately,, this assuaption is not advisable

for Our study. Parameterizing turbulence with constant eddy coeff i-

L cients canmt represet turbulent processes that are of scale smaller

than the grid system of the ntmrical. =del. Therefore, the use of..-

constant eddy viscosity implies a grid so fines that is not suitable

for MIwarical cOnputations, (Smzmria,1976).L

.16
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Deardoff (1973) suggested the use of the entire second-order

momntum equations for modelling the Reynolds stresses. in order to

resolve the higher order stresses that appear in the equation, the

method implies the addition of at least ten time-dependent equations, -

and the scheme is not efficient..

The most comn closure schemes resolve the Reynolds stresses by

postulating empirical definitions for the higher order stresses.

These models are generally derived by one of two different approaches,

depending on the nature of the problem. Thus if the purpose of the

analysis is to study the response of the boundary layer to the

variations of the forcing flow or its spectral distribution, it is

necessary to .ansider closure schemes where the Reynolds stresses are

defined from individual transport equations. Qn the other hand, if

the analysis is focused on the effects of the boundary layer on the

circulation above that layer, it is sufficient to develop closure

schemes that parameterize the effects of turbulence via eddy

coefficients and calculate only the mean value of the quantities.

For the latter approach, Mellor and Yamada (1974) obtained an

expression tor the turbulent fluxes. They are related to the shear

of the mean flow via eddy coefficients proportional to the square

root of the local value of the turbulent kinetic energy q

and a mixing length scale t dependent upon the distance from the wall

II

* . . . . .
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gthrough a proportional coefficient which takes into acoouilt the

stratification of the fluid, i.e.:

(2.3.2a) - 'ur, . 'v') SMq(uZ,Vz)

(2.3.2b) - We' -ST z

'Thus the problem is closed when one specifies:

-i) an equation for the turbulent kinetic energy# q

ii) an equation for the muixing length scale, it

_ iii) the functions SM and ST

2.3.1 The turbulent kinetic energy equation

S'The equation for the turbulent kinetic energy of the flow may be

derived by formlating the dynamics equations for the velocity

fluctuations and focnirg'the tim-averaged equations for the stress

- c~aionents (lMonin and Yaglom, 1971). This yields an equation which

contains correlation terms that nust still be parameterized. The

nature of the assumptions made in order to close the q 2-equation

leads to different turbulence models. We adopt the turbulent kinetic

energy equation according to the level 2 1/2 closure scheme of Mellor

and Yamada (1982). The equation is written as follows:

(2.3.3) 1/2(%2 +uqi2+ wq)uPd + Ps +Pb c

IL

*A,.P.;. C -. ---. s
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where the ter Pd represents vertical diffusion of the turbulent-

kinetic energy. in analogy with the definitions (2.3.2), it is

defined as:

(2.3.4a) Pd (1/2 )(SQtq(q2Z)Z

The function So is usually kaept constant.

7h term Ps is the production of turbulent kinetic energy by --

the mean flow, i.e.:

(2.3.4b) Ps (W uVz

The term Pb is the gravitational potential energy of the

turbulent flow, i.e.:

(2.3.4c) Pb ga wrV

7he term -c represents dissipation of the turbulent kinetic

energy by internal friction. Under the Solzwogorov~ hypothesis it is

dimensionally correct to def ine:

(2.3.4d) - c q3/c&

where the constant c unut be defined empirically.

p 2.3.2 The turbulent length scale

Thee are many ways to define the turbulent length scale. It

may be specified empirically from the gross features of the flow

PA



gemetry, or it may be predicted from a semi-empirical dynamical

0 differential equation. Using the latter approach, Rotta (1951) 

deried a eqztion for the quantity q2-1. aever, in ozr5er to

specify the temm in the equation, it is necessary to introduce more

parameters than in the case of the 1Wynolds stresses equations, where

many of the terms are determined precisely without recourse to

further parameterization. Therefore, the q2-i equation is less

convincing than some other model equations and more likely to be

substituted by other x-closure schems.

Vager and Nadezhina (1975) used a differential equation for I p
obtained by mniplation from the original q 2-t equation. The

expression is still dependent on many constants that nut somehow be

determined. The raykhtman-Zilitinkevich relation, which is basically

a further simplification of the t-equation, is widely used in the

Soviet literature.

j * It appears fairly clear that the turbulent length scale cannot

exceed saw some fraction of the total spread of the turbulent region

(represented by the variable, to), and that soewhere in the

' "neighborhood of the wall, it should be proportional to the distance

from the wall. Therefore there are two fundanental conditions for

the quantity t:

S-z as z 0

A o 10 as z!

I "

p '! ,.:.. ," .--. " . . ."' - ' , , ''"'''
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Etta those sis~le constraints, Mellor and Yamada (1974) used an

algebraic expression for z:

(2.3.5) -(icZ/* 0 + A

where K is the SArrua constant.

7he maximLum scale xO is defined as follows:

(2.3.6) 10 y fo Jz 3z/fo qldz

where y is an empirical constant.

In this study, the variable i. is determined from (2.3.5) and

(2.3.6) rather than from the q2-i equation which is an intrinsic

component of the level 2 1/2 closure scheme.--

2.3.3. The functions Sii and ST.~

From the Mellor and Yamada (1982) level 2 closure schemer it is

possible to derive, algebraic expressions for the functions SM and ST

as functions of either flux Richardson number:

(2.3.7) Be Pb/PS

or gradient Richardson ruzr*er:

(2.3.8) Im +(z

The level 2 closure achwa differs from the 2 1/2 level as the

eddy kinetic. energy equation does not contain a time derivative and
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5, the diffusion terms. It is our belief that the model will not be

articularly sue to variations of the functions sM and ST
I,.

ard, following Yamada (1983), we take:

1.96 (0.1912 - Ef)(0.2341 - Rf)
(I - (0.2231 - Rf) < 0.16

(2.3.9a) SM
0.085 Rf > 0.16

(0. 221 - M)1
sM (0.2341 - i .318 Rf < 0.16

(2.3.9b) ST
0.095 Rf • 0.16

Therefore our closure scheme is internediate to the l~lor and

Yamada levels 2 and 2 1/2 and we propose calling it a level 2.3.

I;.

.........-..-. o. .- •
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3. TMENU.1RICAL MOCM."' ""

Turbulent closure schemes have been intensively applied to study

the aospheric planetary boundary layer, and many numerical odes

are available for that purpose (Brown, 1970; Mason and Sykes, 1980;

Smmeria, 1976; yamada, 1979, 1982, and 1983). Hoever, there exists

a need at present to develop numerical models for the Benthic

Boudary Layer to understand the dynamic role which that region has

on the oceanic circulation.

Weatherly and Martin (1978) developed a one-dimensional model

derived from the level 2 closure scheme of Mellor and Yamada (1974); -
_#

Richardson (1982a, 1982b, and 1984) presented one-dimensional and

two-dimensional models applied to a multi-layered ocean, where the

Reynolds stresses are defined from individual transport equations.

The aim of all those studies is to investigate how the flow and the

stratification above the BBL affects the structure and the thickness

of the benthic region. However, to my knowledge, no atte pts have

been made to analyze how the Benthic Boundary Layer affects the

structure of the forcing flow.

The numerical model described in this section is specifically

designed to examine the decay of a deep eddy-like flow subjected to

bott a friction forces.

18"
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3.1 The ,Marical ,del equations

Define (uo,vo) to be the velocity components representing the

migration of the eddy in the ocean; in order to reduce the number of

the mesh points and increase the efficiency of the scheme, the model

equations are rewritten in a coordinate system (i,y,i) moving with

the eddy. This is achieved by applying the transformation:

(3.1.1) y * + vot
ZI

If uo and vo are assumed to be constant, in the new coordinate system

the model equations are as follows:

1(3.1.2a) ut + uux + uz - fly + Vo) =-nx - -N + (AxUx)x + (,%Uzlz .--

(3.1.2b) vt + uvx + wvz + f(u + uo ) = (AxyVx) x + (KMVz) z*
(3.1.2c) 0 pz - gp

(3.1.2d) ux + wz = 0

(3.1.2e) Tt + UTx + WTz (AITX)x + (,rTzlz

* (3.1.2f) 1/2(c~ uq, Z q /(gq~zz+K(~4 ) + Kr(- goQT 2)

.
..

• ~. .................... ................ ,....
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(Y.1.29) F* v + StqIKT k + S~j;~

where tild has been at ad.

'he set of equations (3.1.2) is resolved in the region 0 - z C h,"

- K < x < xe, with the boundary conditions:

(u,v,w) - (- U0 , - v 0, 0)
(3.1.3) at z - 0

TZ 0
(3.1.4)1uv Uig at z = H •-

5Tz O .0_ -

(3.1.5) q 0 at z d

(uv) * -u 0o, -v")

(3.1.6) T TB(z) at Ix I xo

q 0
.-'

7he value of the depth d and of the other constants used in the

numrical sinulations are given in Table 3. 1.

Let h be the thickness of the BBL, integration over depth of the

continuity equation (2.1.d:) leads to:

(3.1.7a) huxdz + we

(3.1.7b) we - + w(x,h(x))

. .. ,-

** * > ** .. *. ° , ,*
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C Equations (3.1.7) imply that the spin-downm process acts primarily

on the depth averaged ompoInts of the motion. it= it is cot wuient

to rewite the fwctIons u,v, and T as:

(3.1.8) v = v' + Vg

TIT' + T

Wkhere ( )g represenits the bavotropic coponnt of the motion

associated with thermocline displaceint.

With the deomIpoition (3.1.8) it Is possible to int two

different time scale intrinsic to the physical nature of the pcoblem:

the larger tim scale (hereafter, expressed by the variable,, -r) that

controls the decay of the flo, and the smsl tim scale (hereafter,

expressed by the variable, t) that controls the deviations of the fields

from their barotropic coiomt (which can be regarded as constant with-

respect to this tim scale). (See Setion 5.1.1 for a coIqlete

di-ional analysis of the equation 2.1.1). If we Im that

Sadvection, diffusion, and tetl wind effect respond to the smaller

time scale, we derive the followng equations for the baLotropic notion:

(3.l.9a) fr -g = -g

(3.1.9b) + fUg - 0

S T

* -i . .- C a *s
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(3.1.9c) T r 0SO

(3.1.9d) + We 0
%" %

Rjuation (3.1.9d) has bew written under the rigid lid aroxtmtion.

'The term waJ(H-) of (3.1.9d) is defined from average value over the

period . F- !! r ee, in resolving equations (3.19) it is necessary

alm to define the thicknmess of the BBL. In g ral, the etickmess of

the BBL is defined a the height at which the fUM is parallel to the

forcing flow but slightly greater in magnitude, or as the height at -

which the turbulent kinetic enry is reduced by a factor of 99% with

rempect to its value at the surfac. Since the model includes advective

tems a the he A wind effect which affects the vertical profile of 71
the velocity disriuton prefer to relate the BBL thickness to the

turbulant kinetic energy.

No special treatunt is required in the integration of the

eq.ations (3.1.9). 2erefo'e we focus our attention on the resolution

of the system (3.1.2).

3.2. TM grid systam.

The equations (3.2.1) are solved using a grid of spatially stag-

gered variables,chomen mo that application of the boudary conditions is

made easier. Since the vertical structure of the turbulent eddies is

................................ "-.. -.. *-.
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smal noar the boto and increases upwards, a vertical grid equall1y

spaced in a log-Plus-linear vertical anozdinate is often used. This

varies apprioitely -oaithnically at the bottom and linearly atI

the higher levelsi iLe.

Z - Z 0 212 2(x/-o)

where Z is the transfomed oordinate, zo the roughness parameter, cl

p

and 02 constants (Ymda,1978). secause, our study is not

ptila focused in the lower levels of the uBLe but in the

region of transition between the boundary layer and the interI-or

flow, we prefer to introue a variable vertical grid, where the

distance between two levels is function of height.

3.3. 7ha treatment of the equations.

21e rAVOxical schem choen in the treatmeant of the equations

(3.1.2) is based on the centered difference methd. Since the

system uses a variable vertical resolution, the value of any given

function at any mash point betwen t consecutive #-levels (nt

* necessarly the middle point) is comuted by linear interpolation.

* All the terms are lepfoge in tim except for horizontal and

vertical diffusion and for the term -c, of equation (2.3.4d), that

are treated using the Dbifort-Frankel,, e Crank-Nicholson, and a

sami-implicit schue respectively. This schme. is affect only by

the 3 FL stability condition applied to the advective term:
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W t

(3.3.1) << 1

where W is the scale of the vertical velocity and (1 )min the

mllest distance betwe two consecutive levels.

With the Uank-Nicholson scheme, the equations containing

vertical diffusion are reduced to a system of linear algebraic

equations for the variables at tim step (n+l) and horizontal

location j, where all the variables at the time steps n and (n-1) are

know. Became of its tridiaonal nature, matrix solutions can be

efficiently obtained by a special form of the Gaussian Elimination

Method (Carnaham et al., 1969).

Unfortunately, the Cank-Nicholson scheme requires that the

vertical eddy coefficients be ccmuted at time step (n+l). Tlis

constraint complicates the solution of the q2 -equation. A reasonable

approximation is to comute the eddy coefficient KQ of (3.1.2f1 at

tim step n. HmJver, once q is known at time step (n+l), the eddy

coefficients I and XT can be defined at the new time step, and the

Crank-Nicholson scheme is applied naturally in the resolution of the

m. mteu and heat conservation equations.

Following Yaada (1978), the horizontal eddy coefficients are

defined as follows:

(3.3.2) Ax - - -m2a(&x)2.Ixj.. +

where a is a constant of pcopoctionality.

'. • , 1



it =

25

The nmenirical piracedure described above is i~taticnally very

efficienti the tim step is suitable for long team simglatiu and

cmter storage is lImited. We retain the variabls for two

I orcguive tim steps exmet for the eddy oefficients and f, "

which mat be saved for three tim steps. Purthmmre, no artificial

conditions are required during the numrical experiments except in

- the definition of q when the q 2-equaticn presents negative values of

the turbulent kinetic energy. In this .case,, dissipation exceeds

- production of the sam energy, and the variable q is set equal to

zero,

Unfortunately, if numerical coputatio are performed for an

i extended period of tim (greater than 8-9 months), it is necessary to

cotrect the scem to prevent nonlinear instability. It is well

knoxwn that the use of the leapfrog scheme in the treatment of the

* advective term induces a distortion in the values of speed and group

velocities. 2W national error affects the short waves: the

smllest waves resolved by the schem (wave-length 2ax) have zero

computational speed velocity and their energy is propagated in the

oppoite direction to the correct group velocity (Grotahn and

- O'Brien, 1976). In order to control offiutational inaccuracy,

numerical scheme are usually developed that include such additional

frictional term such as harmonic or biharmnic terms (Richards,

1984) or smoothing procedures (Ymada, 1978). HMver, the
I .

t

- -. - . a . .C . . *C...- .'a. ~
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corect might alter the physics of the problan, reducing the

ctribution of advection in favor of a merely dissipative regim.

In our cam, w not modify the numrical shm to prevent the

xxaof the nonlinear instability essentially at the center

of the eddy wre the short waves induce a horizontal convergene or

diveWm of energy contrary to the pyics of the problem. Thus

in order to improve the accuracy of the leapfrog schem, horizontal

advactive terns and the continuity equation are resolved by a

centered four space differencing ( otjhn and O'Brien, 1976) ,r

and the horizontal eddy viscosity coefficients are specified as

follows:

Al A V + lOB(AX) 2 pxj. -.j
(3.3.3) - -O&

where vw is a computational horizontal eddy viscosity coefficient.

Although the choice of the horizontal eddy coefficients has been

suggested mrely by coputational argumnts, equations (3.3.3) may be

partially justified as follows. According to Ragallo and Mnin

(1984), for thre-di sioral nemrical models, the horizontal eddy

coefficients may be comuted from:

(3.3.4) A- 2A a .y(u + vi) /

A - 2aax~y(% + vi

. . . . . . . . .. . . . . . I.
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Futhernmre, a two-diznsional formulation of the model equations

(3.1.2) implicitly contains the assumptions:

(3.3.5)i:;::
u <<U V

where L and L, are the dimusional length scales of x- and

y-directios, respectively, and U and V the dimnsional scales of the

x- and y-..mo,-nt of the geostrophic motion respectively. 2=

with the constraints (3.3.5), equation (3.3.4) can be reduced to

(3.3.3).

3.4 The treatment of the boundary conditions

At the lower boundary it is assumed that the velocity varies

logarithmically with height above the botto:m

(3.4.1) I1z1I. 2 u. n(z/zo)
PC

where u* is the friction velocity and is the xman' s constant

(Bowden, 1978). Measur 1s made close to the oceanic floor

indicate that the relation is certainly applicable in the region
I.

just above the surface (Wimbush and Iunk, 1971; Kundu, 1976;

Weatherly, 1977). 2%us our model considers the lower boundary not

at the effective rigid wall but at a height z where the logarithmic

profile is still valid. 2wlumefore, in order to apply the new

boundary condition we must specify the friction velocity u* and the

t direction of the flo at the level z1.

• . .

.',.+",'',""+" % ",." ., ".',',.','-,'.'..',, .. " , .... ..".. . . .... . .... ''... . .....-.. ." -".".," .'".. .'... . .-.. .- '-
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Consistent ;with the level 2 1/2 closure schem and

observations, the friction velocity is computed from the turbulent

eddy kinetic energ at the lowest grid point:

(3.4.2) U. - (B /3"

whee B is constant.

71-e direction of the flow at the lowest grid points is specified

equal to the direction of the flow at the second level, henceforth

representd by the angle c. 7he assumption is justified by

observations and experiments that indicate that the Mma veering is

about constant in the lowest levels of the BBL ( ndu, 1976).

A new problem now arises because of the chosen coordinate

system. We assum that the logarithmic layer is moving with the eddy

as unity and the boundary conditions (3.1.3) are changed into:

u , -uo + - u* cos()ln(zl/zo) "

(3.4.3) v -vo + 1 u* sin(l)mn(zl/zo) at z = zl

Tz " z 0

At the lateral boundaries the ocean is assumed to be at rest.

Howver,, the eddy induces a recirculation in its closest neighborhood

which must supply (absorb) the mass of water pumped in (out) the BBL.

2mu in order to preserve the number of mesh points without closing

. A -

...........................................~. ... .... ...
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the recirculation inside the domain, the boundary conditions (3.1.6)

are modified by requiring that both the u-velocity and the

teierauredistribution be horizontally uniform.

3.5 The initial conditions

In the following discussion, let the superscript o indicate the
I

initial values of the relative variables, assigned for two

consecutive tim steps. 2e thickness hO of the BBL is taken to be:

~~~(3.5.1) hO =0.4 Uj/f I=. _

0.w-here the friction velocity ui is computed as:

(3.5.2) u, 0.03(( + Uo) 2 + ( + Vo) 2 11/

(Weatherly and Martin, 1978).

Above the BSL the functions uO, vO, and TO are specified and qo

is kept equal to zero. At the lowest grid points the initial value

qo is computed fran (3.4.2) and the velocity omponents from (3.4.3),

S.specifying a ten degree Euan veering. After the functions u, v, and

q are defined at the lowest levels, they are matched with their

relative values above the BL by linear interpolation.

•he initial temperature profile considers a bottom layer

neutrally stratified, assuming a complete mixing of the temperature ..

distribution. Although the initial mixed layer and BBL are identical,

it is advisable to underestimate their thickness so as not to
,'.

.. -"
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alter the final temperature profile. If the initial mixed layer

is too thick, no physical process can reestablish stratification

inside it.

he vertical eddy coefficients are computed from the initial

distribution of the turbulent kinetic energy, with the functions SM

and ST given for neutrally stratified flows.

The scheme results not particularly sensitive to the

adjustment process fron the previous initial conditions. In general,

the steady state configuration is reached after about three or four

days, the period necessary to mix the upper strata of the BBL.

3.6 The choice of the time steps

Numerical tests indicate that if a coarse near-bottcm vertical

resolution is used, the logarittmic layer does not instantaneously

respond to the variations of the flow at the upper points. Thus to

preserve the computational efficiency of the scheme, it is necessary

to apply equations (3.4.3) with the variable q of (3.4.2) and values

of the angle a averaged values over a period ATf.

Therefore the numerical procedure illustrated in the previous

sections depends upon which of the following parameters is chosen:

- at the time step used for the resolution of the equations
( 3.1.2).•.:

- A~~the time step used for the correction of the barotropic

f low.

., , ,.-.... • .-.., ,. -.,-.....,.:,,.-. ..°..,,, .- . .., ...... , ....... •..... -.... ,...,.,........ ...... ...... ,.... ,
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- ATf the average period used for the adjustment of the

velocity field at the lower grid points.

- AS the shift between the time steps &. and ATf.

3 It appears natural to consider the time steps AT, ATf, and As P

multiples of At and to choose &T as a multiple of ATf to avoid the

shift as being a function of time.

First, let us consider the parameter ATf. Since turbulent flows

respond to inertial oscillations (D'Asaro, 1980), the natural choice

is ATf - 12 hours.

With respect to the parameter AT, we must choose a time step

short enough to avoid the flow reaching a steady state at each

correction (we do not want to start repeatedly from initial

conditions), but long enough to allow the BBL to adjust itself to the

new state. nerical simulations indicate that the evolution of the

flow above the BBL is not sensitive to the choice of AT; however, fora
large time steps a noise of frequency 1/( 2AT) can appear in the BBL

thickness configuration. The phenomenon, known as 2x-instability

(Lilly, 1965; Phillips, 1959), is a consequence of the fact that the
I

BBL time variations are modulated on two different time scales: the

inertial period associated with the BBL tire scale and the much

larger time scale that controls the variations of the forcing flow.

Thus if AT is too large, the scheme cannot adequately resolve the

inertial oscillations that are incorrectly interpreted as frequencies

- . . -.o.
. . . . . . . . . . . . . . . . . . . . . . -. .
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of order l/ ( 2 4T) lb filter the high frequency noise as rmxh as

possible r unmrical experiments suggest a period AT -48 kours.

In order to define the paramters &s, we have essentially . -

considered the cases as -0 and as -6 hours. Numerical tests

indicate that inside the BBL, for any given interval &T, the f low

might present different instantaneous configurations, but averaged

values over the period aTf and the evolution of the flow above the

layer do not present sbtnaldifferences.* Thus we conclude that

the schem is not affected by the shift as.

.4
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Table 3.* 1: Values of constants used in the ru~uurical, experiments.

Symb~ol Value !omark

2xlo4(L-)-l Thermal expansion coefficient.

vlcu 4s'l Vertical viscosity coefficient.

Vfl iO5c 2s-1  Computational eddy coefficient.

k O. lau2s 1  Vrtical conductivity coefficient.

TO 2 CI reference temperature.

PO 1 gm=r 3  reference density.

f 10-4s-l Coriolis paramater.

g 98l0tk2s-l Gravitational acceleration. F
R iO 7 u radius of the eddy.

xo 1.75x10 7cu Domain extent.

- TH 1: 5au oI1btal depth of the eddy. e

d 1.3xlO4au evel of maxim= possible penetration for
turbulence.

Ax 1.25xl06au THrizontal grid size.

(AZ)M cms - I  Vmili vertical grid size.

(Az) .2xlO4 -  maxia o vertical grid size.

at hUour Thme step.

AT 48 hours Tims step for the barotropic components

ATf 12 hours See Section 3.4.

s o ..
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zi 25cm See Section 3.4.

SQ 0.2 See equation (2.3.6a)

c 15. See equation (2.3.6d)

y 0.20 See equation (2.3.8)

a 0.01 See equation (3.3.2).

B 16.6 See equation (3.4.2).

0.4 Karmns constant.

7w6'-



4. PRELDZfIN ANRLSIS CP TM MOCEL- STRUCURE AND DYNNCS OF THE

BDM IC BDR. L.'A-.

The aim of this section are to study the structure of the

Benthic Boundary layer forced by a mesoscale activity and to inves-

tigate how the Benthic Boundary Layer might affect the dynamics of

the forcing flow. For the present, we assume that dissipation by

bottom friction does not affect the barotropic ompnt of the

motion, so that the the thermocline displacement is kept constant -

* with time.

As we have already discussed, the numerical model described in

the previous sections has been developed with particular attention to

its applicability to long term simulations. Storage and comuter time

are reduced by the use of an unequally spaced vertical resolution and

of the logarithmic law at the lowest levels. Although for an accurate

analysis of the Benthic Boundary Layer structure the model should be

applied with very fine mesh point, we prefer to present results

L obtained with a coarse grid (the minimz vertical increment is Im),

and discuss how cuttional efficiency affects the accuracy of the

• "solutions.

. 4.1. norizontally h geneous flow.

Although the present case is irrelevant in the dynamics of

mesoscale motions, it makes it possible to analyze the structure of

35
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the Benthic Boundary tayer as a function of various velocities and to

test the accuracy of the schm by omzparing the numrical results

with predictions derived by previous works on turbulence.

Working on the hypothesis of horizontally hneneous flCOs,

most of the studies have related turbulent quantities such as the BBL

thickness, friction velocity, and Ezu veering to the forcing flow.

It can be showed that the friction velocity and the Ekann veering ,-

satisfy the relations:

(411) u* D / (U2 + VJ2)1/2
g g

(4.1.2.) sina - /D -CD

where u* is the friction velocity, Ug and Vg are the velocity

components of the forcing flow, a is the magnitude of the Ekman -j

veering at the surface, CD the drag coefficient, and bD a constant of

Proportionality (Csanady, 1967; Blackadar and Tennekes, 1968; Monin

and Yoglom, 1971; Tennekes and tluuey, 1972). It is usually

considered that the drag coefficient is a mcnotonic decreasing

function of the surface amoby number o ul, I/fzo, such that for a

representative oceanic range 106<po<107, 0.03<X--<0.04 (Deardoff,

1970; Weatherly, 1972). YImada (1975) suggested a value bD = 7.55

for flows with small velocities and weak stratification,such as those

considered in our experlments.

". .. -.'

... .. . . .
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Mor intriguing is the definition of the BSL thickeness. Several

authors have defined the BOL thickness as the height, hE, at which the

-flow is pa.-alel to t forcing flow but slightly greater in magnitude

I •(Wimbush E Mank,1970; amdu,1976; Caldll,1976). The same and other

authors predicted the thickness of the BEL as the height h* such as:

(4.1.3) h* ..4 u*/f

(Weatherly, 1972; Richards, 1984). A physically more realistic

definition is to consider the height, hq, at which the BSErgenerated

6 *, turbulence goes to zero (Weatherly & Martin, 1978). Finally, Richards

: (1982a) has related the BL thickness to the tatoerature profile and

defined the BBL thickness as the height, hT, at which the temperature

I gradient is maxi=u=. Tis definition is the least convincing because

* it identifies the DBL with the mixed layer. As w will discuss later,

this relation creates some ambiguities and uqxecisions.

In the follawing sections, we present the values of turbulent

-.. quantities for neutrally and stably stratified flows. All the

nuerical simalations have been made for forcing flow within the

range of the deep ocean values. Mever, values have been restricted

to those greater than O.03rl because the coarse grid does not allow

a correct application of the logarithmic law for smaller velocities.

. . . . . . .. . . .... . .....................................:.........-...........--........-..........."...
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4.1.1. Neutrally stratified flow.

The results of the case are depicted in Fig. 4.1., 4.2, and 4.3.

7he values of the friction velocity were determined by considering

the values of the turbulent kinetic energy at the lowst levels as

in equation (3.4.2) or by evaluating the bottom stresses, i.e.:
14.l.4a1 2 x 2 (Ty )2)1/2

(414a u* ((X)2 +

there
H

.x ff (v-Vg)dz

(4.1.4b)
H

",Y -ff (u-4)g)dz
zo

Cbviously, the magnitude of the drag coefficient computed fram

equation (4.1.4a) is in a better agreement with observations and .

predictions, but in neither case are the drag coefficient or the Ekman

veering a decreasing function of the forcing flow. However, the range

of velocities used in our experiments is too narrow for presenting.

marked evidence of monotony.

The aubiguity in defining the depth of the BBL is clearly

illustrated by the numerical simulations. The defintion (4.1.2) leads

to the thinner BBL, but the function, h*, is definitely correlated

with the variable hE. The best fit between h* and hE is obtained for

h* 0.65u*/f. on the other hand, relating the BeL thickness to

7. ... ..
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the turbulent kinetic energy gives the largest valuez turbulence not -

inhibited by the buoancy forces propagates upwards where the last

residuals of the Man spiral can be still found.

4.1.2. Stably stratified flow.

All the results presented in the following section consider a

Brunt-Vaiasala frequency Ns7.6x10-4s 1 . -

Both Ean veering and drag coefficient have the same distortion

found for neutrally stratified flow (Fig. 4.1, and 4.2), but the

ambiguity between the functions h*, hE, and hq is highly reduced

(Fig. 4.4). Hver, the numerical simulations confirm that the mixed

layer and the BBL cannot be identified with one another. The mixed -i.J
layer is much thicker than BEL and is a measure of the level at which

the Ekmn spiral vanishes. In the upper strata of the mixed layer

the work done against the buoyancy forces balances the input of

turbulent kinetic energy by the shear of the mean flow, and no

turbulent activity can be maintained at those heights.

For the completeness of our analysis, the vertical profiles of

the mean flow, temperature distribution, turbulent kinetic energy,

and momentum vertical eddy visosity coefficient are depicted in Fig.

4.5. Since those quantities exhibit similar patterns for neutrally

stratified flows (except for the level of zero turbulence), we do not

present the relative profiles.

:•.°'.'..;.-.'~~~~~~. ....................... °°" ......:-.'.'....'•.........-...- '.. .
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4.1.3. Discussion.
I..

We now briefly compare the results relative to neutrally

and stably stratified flow. Both Eaman veering and drag coefficient

*are slightly greater when the flow is stably stratified, but the

level of zero turbulence is much lower. Those results confirm a well

known statement that stratification affects the depth of the BBL at a

rate much greater than that of the level of turbulent activity inside

the layer (Weatherly and Martin,1978). Furthermore, since Ekman

veering is a measure of the bottom friction forces acting on the

flow, an increment of turbulence (u*) must correspond to an analogous

increment of Ekman veering.

Our numerical results are consistent with most of the theories

and models of turbulence. However, the vertical coarse mesh point

sensibly affects the values of Oman veering and friction velocity. A

finer vertical resolution increases those values, but does not

particularly change the value of the bottom stress.

In order to verify that those inaccuracies are due to the coarse

resolution rather than to a mistake in the scheme (viz, the

boundary conditions), we compute the Ekan veering from equation

(4.1.2) with the drag coefficient evaluated from u* specified as in

equation (3.4.2) or (4.1.4), and we compare those results with the

values predicted by Deardoff (1970). As Fig. 4.6 indicates, there

are no substantial differences between the values given by the

numerical experiments and the Eman veering as computed from the

1. -
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kinetic energy at the lowest level (i.e., a coarse resolution affects

turbulent kinetic energy and Moan veering equally). On the other

hand, the best fit between results and Deardoff's predictions is

obtained by computing the friction velocity from equation (4.1.4)

(i.e., a coarse resolution does not influence the value of the bottom

stress).

All things considered, we conclude that the inaccuracies of the

scheme do not alter the dynamics of the motion, and the small

distortions due to carse mesh point are compensated for by the

computational efficiency of the model.

4.2. The interaction between the Benthic Boundary Layer and meso-
scale motions.

In this section we wish to show that the interactions between

the Benthic Boundary Layer and a nasoscale eddy-like flow are a

onqn of the constraint imposed on the motion by the

quasi-geostrophic approximation. Such an assumption requires that

the vorticity changes be geostrophic and the temperature changes be

hydrostatic (Pedlosky, 1979). 7he adiabatic temperature variations

due to rising (sinking) of water parcels mut also keep the vorticity

changes geostrophic, and the vertical motion keep the temperature

variations hydrostatic (Bolton,1979). Since both adiabatic

tor;aerature variations and vertical velocity are proportional to the

°7 *~ . . -
2

- .- .. .. . - / .



48

Bousby number, only the magnitude of those general features of the

quasi-geostrophic model are basically affected, if the motion is

fully nonlinear.

In view of those observations, we focus our attention to the - :

structure of the Benthic Boundary Layer associated with cyclonic

(cold), and anticyclonic (warm) eddies.

'here is an old question whether or not the point of iMaximu

velocity of mesoscale flow is close to the edge. 'ibe paucity of

observations for deep motions makes it impossible to resolve the

controversy. Therefore, in order to define the stucture of the

motion, we refer to observations made for Gulf Stream rings, which

indicate that the point of maximu= velocity is more likely to be

located at about 2/3 of the radius (Olson, 1980; Joyce, 1984).

7herefore, the numerical experiments are perfomed for deep eddy-like

flows of total depth H-400m, total extension R-150km, and a linear

velocity distribution of maximuu UM = 0.15ms-l at lOOkm from the

center. The initial temerature distribution far from the bottom is

horizontally homogeneous and stably stratified with a Brunt-Vaissala

frequency N-7.6K10-48-1.

4.2.1. Cyclonic flow.

In order to understand the evolution of the temperature

distribution as depicted in Fig. 4.7, we recall that inside a cyclonic

,•'__
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eddy the Ekman velocity associated with the bottan friction forces has

the form of an upwelling. Fecirculation implies that there mist be a

downwellin at the edge, which pumps warm water in the lowest levels,

remving the original cold bottom water. Conservation of mass requires

that the enviroment supply water to the BBL beneath the eddy. As this

water is injected in the BBL, it is edvected upwards and mixed by

turbulence. Thus the thickness of the mixed layer increases and the

isotherm of the interior tenperature distribution are lifted upwards.

Cnce the original cold water is removed from the bottom, warm water is

supplied to the Benthic Boundary Layer at the edge of the vortex, the

temperature of the mixed layer increases, and the sharp interface

between the mixed layer and the interior is slowly eroded.

As the thickness of the mixed layer increases, the B8L is 7

imbedded in a neutrally stratified layer, and the level of zero

turbulence increases as described in Section 4.1.1. and depicted in

Fig.4.8.

4.2.2. Anticyclonic flow.

With respect to cyclonic flows, the distribution of the vertical

velocity is reversed. There is a downwelling inside the vortex and

an upwelling at the edge. However, the physical mechanisms

associated with the vertical velocity are identical to those described

in the previous section.

..
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Dowmelling inside the eddy has the tendency to remove cold

water from the bottom and reduce the thickness of the mixed layer.

TUrbulence inside the layer, which is primarily determined by the

magnitude of the forcing flow, does not allow complete erosion of the

mixed layer. 7hus as warm water is continuously pumped downwards

from the upper levels of the eddy, the interface between mixed layer

and interior becomes sharper and sharper, and the bottnm layer is

heated only by the heat flux across the interface (Fig. 4.9).

4.2.3. Discussion. .

The features illustrated in the previous sections indicate that

g the structure of the Benthic Boundary Layer is quite different for

cyclonic and anticyclonic flows.

Unider a cyclonic eddy, the structure of the mixed layer is

* primarly defined by vertical advection. It is warmer and thicker

than the mixed layer of a correspondent anticyclonic eddy, and its

horizontal extent is equal to the radius of the vortex (Fig. 4.7).

The associated BBL is ouch thinner than the mixed layer and not

particularly affected by vertical advection. The dynamics are

equivalent to those found for horizontally homogeneous and neutrally

stratified flows (Fig. 4.3, 4.8). 9

Cn the other hand, the mixed layer of an anticyclonic vortex is

. the result of both advective and turbulent processes, and the

t._.

.
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ambiguity between the mixed layer and BBL is greatly reduced as for

stably stratified flows. Furthermore, since vertical advection tries

to retove water from the bottcm, the mixed layer spreads outwards and

the spatial extent of Benthic Boundary layer is greater than the

radius of the eddy.

Although cyclonic and anticyclonic Benthic Boundary Layers have

quite different structures, their influences on the relative forcing

flow are cosparable. 7he dynamic of the flow far from the bounadry is

primarly affected by the thermal wind effect induced by the vertical

advection of t #erature, and the motion deviates from its its

original barotropic configuration (Fig. 4.10).

..... _.-:.
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5. THE DEAY OF AN IDCMOGN 'JVFME UNDER A LINEAR REGME.

The classical approach in fluid dynamics is to consider the

simplest formulation of the problem in order to derive a mathematical

framework suitable for analytical diagnostic solutions and to verify

whether these simple representations are able to describe gross

features of the motion. in general, the mathematical difficulties

which arise are nonlinearities due to stratif ication and the presence

of advection in the governing equations. These terms are therefore

generally dropped fromu the model. Thus as a preliminary studxy of the

decay of an isolated vortex, we assume that the flowr is linear and-

homogeneous. A dimensional analysis of the motion equations provides

the limits within which the above assumptions, might apply.

5.1. The analytical model.

In the following section, we present an analytical model for the

decay of a deep eddy-like flow. It is necessary during the

formulation of the nbodel to define a correct parameterization of

turbulence, suitable for carrying simple analytical solutions. From

this point of view, it is appealing to represent turbulence with

constant eddy viscoity coefficients, so that the problem becomnes

equivalent to the usual O~man Boundary Layer theory. Thus the

56
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starting point of the analysis is to use, as far as possible, of the "

similarities between Laminar Boundary Layer (LBL; viz, BBL defined by

viscosity coefficients that are constant with depth) and Turbulent

* Boundary ayer (TBL; viz, BBL defined by viscosity coefficients that

are function of height) of equal depth and forced by the same flow.

5.1.1. Formulation of the problem.

We consider a deep eddy on a f-plane subjected to bottom friction

forces. The eddy is circular and axially symtric of radius R and

total depth H. A cylindrical coordinate system is chosen such that

the radial coordinate r* is zero at the center of the eddy and

K increases outwards and the vertical coordinate z* is zero at the p

bottom and increases upwards. The fluid is assumed to be

inoamressible and Boussinesq. We neglect horizontal diffusion of

Smmentum and temperature (i.e., there is not substantial exchange S

between the eddy and the surrounding water). Vertical diffusion is

also neglected inside the eddy but not close to the bottom, where it

Vdefines a BBL of thickness h*. Thus the equations for the flow 3

away from the BBL are:

v , 1
(5.1.la) +u*U,+wuz, (f +

(5..b), + U*V, + w v*, + (f + r) + u* 0

......

.0 -. 
.. . ... 

.. - - . - .
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(5.l.lc) 0 - P* -go

(5.1.1d) -7 {.r u r+w 0
r

t * *B

Thea subscripts (r* ,z ,'t denote partial differentiation, the

variables u~, v* and w* are the mean comonents of the radial,-

azimuthal, and vertical velocities respectively. The variable p is

the deviation of density from the state of rest, expressed by the

linear function p9 (z ).The variable p* is the deviation of the

hydrostatic pressure fran the hydrostatic pressure associated with the

state of rest, g is the gravitational acceleration, f the conchls

Parameter and Po a constant reference value of density.

The variables are nondiniensionalized by assuming geostrophic and

hydrostatic balances, and scaling the tempo~ral variable with the

spin-down tim scale for a bottom layer (henceforth LBL) defined by a

characteristic thickness D and by an eddy viscosity coefficient

constant with depth ((Meenspan, 1968). Therefore, the variables are

scaled in the following manner:

r z~ Hz rh-

(5..2)(u*, V*) -U(u~v) w** ~p* 0 0fuLp

fUR t f
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Introduce the parameters:

(5.1.3a) U/fR The ..ssby number

(5.1.3b) E - (D/H)2  The EMman num"ber

(5.1.3c) N 2 (- g0 /pOH) The square of the Brunt-Vaisala 0

Bz frequency

(5.1.3d) s - N2 2  The stratification parameter
FRT

- (5.1.3e) =

Therefore, the momentum equations in the nondimensionalized for

are:

(5.l.4a) 2-1 (1+e Vv Pr.
Dt

(5.1.4b) .v + (1 -€ )u= 0
-

4 r

(5.1.4c) 0-- Pz -

(5.1.4d) E (ru)r + wz= 0

(5.1.4e) D

where

D a
(5.1.4f) D - at + 3-.+ +wL

The boundary and initial conditions of the problem (5.1.4) must

be carefully assigned. Since we are concerned with the decay of the

eddy, we neglect the early stages of the evolution of the flow.

.- i"...
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Thus we assume that dissipation by bottom friction starts being

effective after the geostrophic flow of the eddy is fully developed.

The equations (5.1.4) are satisfied within the region 0Url, 0zcl.

The bottom of the eddy is at z 0 0 and the thermocline displacement

at z = 1. The azimuthal velocity, v, must vanish at the center of

the eddy. We assume that at the edge the pressure is the hydrostatic

pressure associated with the state at rest (i.e., the eddy is at rest

with respect to the surrounding water). We do not close the problem

with lateral boundary layers. This is equivalent to assuming that

all the water exchanged between the eddy and the surrounding water is -

exchanged via the BBL. At the bottm of the eddy the boundary

conditions are specified by matching the interior and the boundary

layer solutions. In particular, since the BBL is characteristically

a well-mixed region, stratification does not affect the order of

magnitude of the vertical velocity pumped out of the bottan layer;

i.e.,

where the tilde indicates the BBL solution and wo = 0(l) (Pedlosky,

1979).

Assume:

(5.1.6) C << 1

and expand all the variables in their asytotic expansion with

respect to the parameter c. Thus the variables are scaled in the

following manner:

..............-... ,...-..,.... .- 2 ...'.-''.i,. - .-i i'.
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U M CU- -

(5.1.7)

- s,, (;O + + *

p no + n'+ .  + .+ -(PO + ep +. ..

= + 01)

Dt at

~~Assume: ,.

(5.1.8) s- << e2

Thus in first approximation it follows:

K0
(5.1.8a) vO - r

0

(5.1.8b) Xvt + ul 0 

i (5.l.8c) .(rUL)r + Wz = 0

(5.1.8d) 0 - ;0

(5.1.8e) pt -o 0

Here the variable n represents the displacement of the thermocline.

Thus for the range'of the parameters:

(5.1.9) sE<< <<1
c
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it follows that the effects of bottom friction on stratification are -

of secondary importance on the spin-down process of the eddy and the

eddy decays homogeneously.

In order to verify the applicability of the model to a deep-eddy-

like flow, let us consider typical values for such a flow located at

middle latitude (Armi and D'Asaro, 1980):

H - 4 x 103 m D - 20 m R 105 m
(5.1.1a)

U - 15 Cs-1  f - 10-4s - 1  N2  0.7 x 10- 7s- 2

These values inply:

v/i'=0.5 x 10-2

c -1.5 x 10-2

s -. 1 x 10"2

(5.1.10 b)

- .36 x 10- 2  ___j

-4 -0.3

and the relation (5.1.9) is satisfied. Integration over depth of the

continuity equation (5.1.8c) and equation (5.1.8b) lead to:

(5.1.11) A( (& t - X2ht - o F ( lSo)rt 0

where L = 4g/f is the barotropic radius of deformation. The term

containing nt represents the contribution of the free surface - -

variations to the potential vorticity by vortex-tube stretching
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(Pedlsky, 1979). Since R << LD, this contribution is unimportant

and can be neglected (i.e.,, the free surface appears no different

from a rigid lid). Therefore, we simplify equation (5.1.11) by

neglecting this term.

5.1.2. The Bottom Boundary Layer solution.

- To close the problem, we must now define the functions wo and h

of the equation (5.1.1U) from the BBL solutions. The mathematical

difficulties of the problem depend on the turbulent nature of the BBL

In order to present simple analytical solutions, it is appealing ,

to parameterize turbulence via eddy viscosity coefficients that are

constant with depth. Thus we coare the dynamics of a Turbulent

Boundary Layer (henceforth TL) with the dynamics of a LBL of equal

depth and forced by the same flow.

Let the superscript L indicate values for the LBL; thus the LBL

is defined by the eddy viscosity coefficient vL (constant with

depth):

fD2

(5.1.12) vL(r) = 2 h2 (r)

In Appendix A we show that the constant eddy viscosity

coefficient vL is a good estimate of the mean value of the eddy

viscosity coefficient K (z) which defines the TBL. However, there is

atal difference between the assumptions that the eddy

. .. -.
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coef ficient is constant throughout the boundary layer or that it is a-

function of height. Cne of the main disagreements observed between

LB~s and TBLs is that close to the rigid wall, the Ekman veering is

4510 and 100 respectively, (Weatherly, 1972). Thus phenomenon is a

measure of the different friction forces that drive laminar and

turbulent motions.

OCtside the boundary layer, the Coriolis forces Fc balance the

pressure gradient forces Fp exactly (Fig. 5.1a); inside the layer,

the forces that act on the layer as a whole are the pressure gradient

forces Fp (depending only upon the thickness of the layer and the

geostrophic flow of the interior), the friction forces Ff and the

Coriolis forces Fc (Fig. 5.1b). If we require that the Ekman

veering is at an angle a with respect to the flow above the layer it

follows that:

Ep + Fgcos 0+ FOsin ou
(5.1.13)

FS sin s FO cos Bs 0c f

where the superscript 0 indicates values for the given Ekman veering

.................. . . .....

LBant ~ sthtcoe the rigid wall. Eqaton (5..13 imply:s il-""

(5.1.14) ~j/Fp s.n
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and therefore,

(5.1.15) 5  .25

Therefore we conclude that IBIs are more dissipative than LB--

for equal boundary layer depth and- equal forcing geostrophic, flow.

a). 7he Oman velocity

As the previous analysis indicates, a LBL cannot satisfactorily

parameterize a 7BL. Therefore, in order to derive an appropriate

expression for the term Q, we assume that the Ekmn Boundary Layer

theory is applicable only above the logarithmic layer. 2u the

non-slip boundary condition at the rigid surface is transformed into:

(5.1.16) (u,v) a (WOOsB,Subsino)

where ub is the magnitude of the velocity at the top of the .

logarithmic layer and o the Ekman veering. It can be showed that

(Bolton, 1979):

ub -CS sn 24 21/2-i +V

where (Ug,Vg) are the velocity cmowmets of the forcing flow. !hus,

neglecting term O(),the solution above the layer is given by:

(5.1.17a) u - -vOe-Csin + vo(co.s-inO)e- sin(&-$)

...................................

. . . . . ~~~~ ................-.
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(5.1.17b) v - vo(I-e-cos) + vO(cosB-in$)e-Cos(C-$)

where .-

C- wz/l(r h(r))

SThus the Mman velocity At the top of a ,lEL is .

(5.1.18b) k - p

(5.1.18c) 10 " rhvo)r

An Ekman veering S-10 leads to the value k-O.08.

b). The thickness of the Bottom Boundary Layer

We first recall that the thickness of a LaL does not vary with

time and it is e t of the forcing flow, but the

characteristic scale of a 3L thickness ast somehow be related to

the forcing flow. Usually the thickness of a '7L is taken to be

(Wimbush a Munk, 1974; Weatherly, 1972; Weatherly and Martin, 1978):

(5.1.19) D - 0.4u*/f
tD

where the friction velocity u* can be related to the flow above the

bottom layer:

(5.1.20) u* aU

The constant of proportionality, a, is usually assumed to range fram

. 9
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0.03 to 0.04 (KuMdu, 1976). Therefore, with the non-dimensionalized -

variables we might assume:

(5.1.21) h - 1Ol. + O(c)

The relation (5.1.21) is particularly appealing because of its

simplicity; however, it must be applied under the correct

circustances. As we have pointed out, during the decay of the

vortex, the effects of stratification are of secondary importance,

but during the phase in which the interior flow builds up the BBL,

stratification plays an important dynamic role, mixing the bottom

layer and creating the sharp interface that inhibits the upward

proagation of turbulence. For steady state flows, the mixed layer

is the region in which most of the turbulent activity occurs and the

relation (5.1.21) applies. On the other hand, as the forcing flow

decays, we might expect a reduction of turbulence and a consequent

reduction of the TL thickness. Fkwever, once the initial TL has

been mixed, there are no mechanisms (except molecular diffusion) for -:

reestablishing stratification, and therefore, turbulence can still

Propagate upward to the upper levels of the mixed layer. Then, the

TBL retains s memory 'of the original forcing flow which highly

complicates the relation between the BBL thickness and the interior

flow. Thus we can conclude that the relation (5.1.21) might be

applied at least in the early stage of the spin-down process, when

the mixed layer and the BL are in balance.

.. •.
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Independent of the validity of equation (5.1.21), substituting

(5.1.8), (5.1.9Win (5.1.3e) it follows:

(51.2)~ - R 0 R X10-2)
.. 4e4 0

Thus the parameter x is related only to the spatial dimensions of

the vortex.

5.1.3. The model equation

Substituting (5.1.16), (5.1.17), and (5.1.21) into (5.1.11) using

the rigid lid approximation, the model equation is reduced to:

(5.1.23) (rvO)rt + xrlOlt + k(rl~y°IY)r 0 t)O

IE subjected to the boundary and initial conditions:

(5.1.24a) v°(O,t) = 0

(5.1.24b) v°(r,0) =V(r) t0--

Furthermore, because of the boundary condition at the center of the

eddy, the initial velocity distribution V(r) may be written as follows:

(5.1.24c) V(r) - Ar~f(r)

where A is constant, f(0) 1 1,-and m>O.

Consider equation (5.1.23) and its term IyOlt. Since the

* thickness of the BBL is related to the magnitude of the forcing flow,

.5., .. .. . . * . . .. "..- -S. .. .
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the term I vOI t is always negative and in the decay process of the flow

might be considered equivalent to an apparent upwellin. Then, we

conclude that the BL time variations are a dissipative mechanism for

cyclonic eddies, but they izply a production of relative vorticity for

anticyclonic eddies. Therefore, we expect that cyclonic vortices decay

faster than anticyclonic with equivalent features.

Although the nonlinear nature of equation (5.1.23) does not make

it possible to present an expression for the general solution of the

problem, additional information can be derived. Introduce the new

variables :

p Ar
(5.1.25)

T kt

Sguations (5.1.23) and (5.1.24c) are transformed into:

(5.1.26) (PVO)PT + 0IIl,T + (PI lyVO1 )r 0 -

(5.1.27) V A),

Rjuation (5.1.26) inplies that the eddy does not respond

simultaneously to dissipation by bottom friction, but with a time

shift expressed by the factor x-a. -Then w conclude that the solution

is of the form:

(5.1.28) VO - vO (xr, kt + y)

....-.-....-.-.-...-.......-..--.. ,.-.-...-..-.....-.-.-..-'.-'.-..-..'.-.......,'.- -... z.- ,:',2,',. .,2-2-.,2.2
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5 and the associated decay tire scale Td~ is given by:

(5.1.29) Td~ +

where y represents the shift factor. Thfe essence of the solution

(5.1.28) can be sumarized as follows:

During the spin-dcwn process "fat" eddies spread and lose mo~st
AnS

of their kinetic energy in the early stage of the decay. Hoever,

the cas is of purely academic interest. *Ft" eddies require a

- radius so large that the rigid lid approximation is no longer valid

and (5.1.26) cannot be applied.

" Slim" eddies ocntract and respond with a delay to dissipation

by bottom friction. Here, w- reognize two different phases of the

decay: the early stage during w~hich eddies preserve their initial

U features almost unchanged, and the final stage during which eddies

rapidly lose their kinetic energy.

We first assume X. 1. During the decay the horizontal

scale of the eddy does not change, and the eddy responds

siuiltaneously to bottom friction dissipation. On the other hand, if
w asm x 1, the Mwe might evolve in accordance with any of the

previous cas. We recall that the previusn possibilities can never

%S
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be found in the decay process of the same eddy; during the spin-down

fat eddies become fatter and slim eddies slimmer.

Finally, w recall that according to the values of (5.l.10a)

typical deep eddy-like flows evolve as illustrated in case ii), and

the associated time scale of the decay is:

(5.1.30) Td -1.2 years

On the other hand, if we suppose that the eddy is subjected to a LBL,

the associated time scale is :

(5.1.31) TL f)1  1 month,d

It is unnecessary to emphasize that the Td value expresses a much
more realistic estimate thanT. and that the evolution of the flow

according to our model is also in good agreement with observations

(The Ring Group, 1981).

5.1.4. Discussion.

The model suggests that spin-down occurs on a time scale of

about one year. The result is indeed in good agreement with

observations and measurments. A dimensional analysis indicates that

dissipation affects primarly the barotropic cxopnent of the motion,

provided that the stratification parameter s and the square root of

. " .,. . . .

-ii"'"."? i . .. • . ,-".." .. ',,.',-. -. . .... . . " •. *" . -"" .- ,* , .'. _" " . .
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the Oman number E is much smaller than the square of-the klssby

number T Thus if we assume also that the Fssby number is much less

than unity, the eddy might be considered linear and homogeneous.

The results of the model might be summarized as follows:

- LBLs are more dissipative than 7BL of equal depth and forced by the

same flow. The Ekman velocity at the top of a 'BL is proportional to

the Eman velocity of the correspondent LBL through a constant of

proportionality which is a function of the Ekman veering at the wall.

- The BBL time variations are a dissipative mechanism of kinetic

energy for cyclonic flows, but they imply a production of relative S

vorticity for anticyclonic flows. Thus cyclonic eddies decay faster

than anticyclonic eddies of equal features.

- he evolution of the flow depends upon the range between the S

radius and the total depth of the vortex. For realistic values of

those spatial dimensions, eddies contract and the spin-down occurs in

two phases: the early phase, during which eddies preserve their original e

features, and the final stage, during which eddies rapidly lose their

kinetic energy.

5.2. The numerical experiments.

Inspite of the assumptions made throughout the formulation of

the problem, the analytical model is able to reproduce most of the

features observed during the decay of mesoscale eddies and suggests

a simple parameterization for the BBL turbulent activity. Therefore we

.
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a apply the numerical mo~del to investigate the decay of a deep

eddy-like flow under linear regime. T1he eddy is assumed to be

homogeneous except close to the bottomu where density is a linear

function of depth. The condition is required for generating a bottom

mixed layer and for maintaining a sharp temiperature gradient at the

top of the layer which inhibits turbulence for propagating upwards.

The eddies considered in the nmrical experiments have the

typical dimensional values given in (5.1.10), and linear initial

velocity distributions.

5.2.1. Cyclonic and anticyclonic flows.

We consider two eddies of equal spatial dimensions, but initial -

velocity distributions of opposite sign. Numerical simulations

indicate that the decay patterns are virtually identical inside the

j vortices (Fig. 5.2, and 5.3). Both eddies lose mre than 30% of

their initial energy in the first year of the spin-down. The result

is in good agreement with the estimated decay time scale of the

analytical model.*

Cn the other hand,. cyclonic and anticyclonic eddies induce

different circulations in the surrounding waters. As Fig. 5.4

illustrates, the radius of the anticyclonic eddy contracts about

2% of its initial value in the first year of the spin-down, but the
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cyclonic eddy preserves its original radius. !he features are a

conequnceof the role played by the BBL time variations during the

decay of the flow.

Let us consider a cyclonic eddy. At the edge of the vortex the

Ekman velocity has the form of a downelling, but the BBL tie

variations are equivalent to an upwelling. Thus each effect

opposes the other, tending to preserve the original radius of the

eddy. In contrast, at the edge of an anticyclonic eddy both the kman

upwelling velocity and BBL time variations work to increase the

gradient ci. the forcing flow and an anticyclonic eddy must contract.

5.2.2. The Ekman velocity.

We consider the decay induced by an Mman velocity caiputed as:

(5.2.1) we - < k(hVg)x/(H-h) >

where the constant k is defined in (5.1.18b) and < > indicates

average value over the period Ar.

As Fig. 5.5 indicates, no substantial differences are found in

the evolution of the flow when the Ekoan velocity is computed as in

(3.1.7b) (the term ht being neglected) or defined as in (5.2.1).

Thus we conclude that the definition (5.1.18) is the correct

para-eteriziation of the Oman velocity present at the top of a TBL.

. . --. .-.
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5.2-3. The evolution of the Bottom Boundary Layer

The evolution of the BBL thickness is depicted in Fig. 5.6.

Although the rate of the decay for the forcing flow is uniform, the

BL evolves in four distinct phases:

i) The initial stage, during which the BL decreases (the high

frequency noise of Fig. 5.6 is a consquence of the 2a-instability

and an indication that the inertial oscillations have been excited).

ii) The early stage (about 1.5 months), during which the BBL

preserves the new configuration. 0

iii) The intermediate stage (about 2.5 months), during which the BBL

thickness decreases with a well-defined pattern.

iv) The final stage (after 4 months fron the begining of the decay),

during which the BBL appears to maintain a steady configuration.

These features might be explained as follows. At time t-0 of

5 the decay, the BL and mixed layer are in a condition of equilibrium.

When dissipation is primed, there is an initial loss of kinetic

energy and a reduction of the BL thickness. Then the BL is

imbedded in a neutrally stratified layer and turbulence, not 0

inhibited by the buoyanWy forces, can propagate upwards in the upper

levels of the mixed layer. As the forcing flow continues to decay,

the supply of kinetic energy from the mean flow cannot support

turbulent activity in the upper strata of the mixed layer and the DEL

decreases at a rate faster than that of the forcing flow. From Fig.

5.2 and 5.6 we estimated that the DEL thickness is not responsive to

s! CI
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a reduction of the kinetic energy of the forcing flow up to 25% of its -

original value. Four months after the begining of the decay, both

BBL and forcing flow are reduced by a factor of 30%, but the mean

kinetic energy is now sufficient to mantain turbulence in the upper

levels of the new BBL, and the BBL thickness reaches a new constant

configuration.

A

5.*3. Csuparison between analytical model and numerical experiments.

The numerical experiments confirm most of the results of the -

analytical model, but some of the features suggested by the model are

reproduced only in minimal measure or no~t at all. The numerical

simulations ratify that the M=a velocity has been correctly parame-

terized as in (5.1.18), and the decay time scales of both analytical

model and numerical tests are in good agreement.

The discrepancies depend upon the dynamic role of the BBL time

variations. T n the formulation of the analytical model, we have

supposed that the BBL thickness is proportional to the magnitude of

the forcing flow. This includes the imrplicit assumption that the BBL

time variations are of the sane order of magnitude as the time var-

iations; of the forcing flow. Under such an hypothesis, the BBL

variations becane responsible for the different decay pattern for

cyclonic and anticyclonic eddies, for the contraction, and for the

delay with which the flow responds to dissipation by bottomn

friction.
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Thus the numrical experiments indicate that the weakness of

the analytical model is due~ to the definition of the BBL. The BBL

- thickness was related to the forcing flow through the friction

*k velocity (equations (5.1.19), (5.1.20)), but the ratio between

friction velocity and forcing flow is found to be constant during the

spin-down of the motion (Fig. 5.7).

The evolution of the BBL thickness depends upon the dynamic role

of the buo~yancy forces.* Thus a correct parameterization of the BBL

thickness presents an intriguing problem which does not have an easy

solution. Frcm our analysis, we might propose to modify the relation

(5.1.21) as follows:

LI(5.3.1) h a lyPt. + 0(d)

* where is an empirical (unknown) function dependent upon the

mgnitude of the initial velocity distribution and stratification.

Howver, the problem requires an analysis which is beyond the bounds

* - of the present research.
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6. TE DECAY OF A EEP MESOSCALE EDDY-LIKE FLCJ.

The analysis presented in the previous section indicates that

bottom friction forces are an important mechanism for the decay of

isolated vortices. Bowever, the formulation of the model precludes

certain types of spi-dwn mechanism and observed features.

Perhaps the most important oaissions are the assumptions that the

eddy does not interact with the sdrrounding water, that the &=by

number, c, is much less than unity, and that the product of the

stratification parameter, s, and the square root of the Ekman number,

E, is much less that the square of the Rossby number. Scaling

IE arguments do not completely support the validity of the last

conditions. Here we analyze how the physical mechanisms of " "

advection and stratification affect the dynamics of a deep mesoscale

B flow during the decay induced by bottom friction forces.

Since the simulations are performed for extended periods of

time, the numerical scheme is modified to prevent nonlinear

instability as has been described in Section 3.3. The correction

does not alter the.dynamics of the problem (Fig. 4.7a, 6.1a; 4.9a,

6.2a). The new horizontal eddy coefficients affect the structure of

the mixed layer, reducing the horizontal gradient of temperature at

the edge of the vortex. This also prevents any instability that

85
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might be caused by adiabatically advecting parcels of fluid through

a strong thermal front.

6.1. Stationary flow.

Here we analyze the response of stationary flows to

dissipation by bottan friction. valen it is not indicated otherwise,

all the numerical experiments consider the initial values given in

Section 4.2. These features imply a !ossby number -1.5x10- 2 , an

Ekman number E-O.25xlO- 4 , and a stratification parameter s-9.2xlO- 2 .

In that case the assumptions (5,1.8) of Section 5 are violated. We

also assume that spin down starts being effective after one month of

numerical simulation, so that the flow may adjust from the initial

conditions.

The importance of advection in the dynamics of the motion is

represented by the Rlssby number, which can be modified by altering

either the velocity scale or the spatial scale of the flow. Changes

of the velocity field imply changes in the turbulent activity of the

BBL and, consequently, changes in the evolution of the decay. On

the other hand, changes.of the horizontal scale affect both the

Iassby number and the stratification parameter without requiring

additional alterations of the flow structure. Thus numerical

experiments in Section 6.1.2 are performed only for different values

of the radius of the vortices.

. . . . . . .
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6.1-1. Cyclonic and anticyclonic flows.

First let us consider the decay pattern of cyclonic and

anticyclonic eddies of equal spatial features but with initial

velocity distributions of opposite sign.

Fig. 6.1 and 6.2 illustrate the evolution of the mixed layer

which might be explained with arguments similar to those used in

Section 4.2, and which are therefore not repeated here. The decay

of the maximum velocity and the evolution of the thermocline

displacenent are depicted in Fig. 6.3 and 6.4 respectively. It
I

follows that spin-down occurs mainly in the first six months, after

which the flow reaches an alnost-steady configuration.

[ Unexpectedly, although both eddies lose approximately 50% of their

initial kinetic energy at the location of maximun velocity, in their

total extensions the cyclonic eddy decays faster than the

B anticyclonic. Furthermore, the cyclonic eddy expands and the

anticyclonic contracts.

Before explaining these features, let us recall that if the

eddy is nonlinear and stratified, the thermal wind effect, caused by

vertical advection of. temperature, implies a reduction in magnitude

of the bottom velocity regardless of its sign at the free surface

(Fig. 4.10). tnder such a circumstance, turbulent activity inside

the BBL is reduced and consequently nonlinear and stratified

flows decay on a larger time scale than the time scale of the

correspondent linear and hcucgeneous flows. In addition, most of

,,_- -, : , :,. ' ..., : , ._- ." :. _-- ..- ,- '.. - ., .. ,., _, .,. ..' • , .-.-, , ,. .., .. • ,.., .-. .. ., ., .,. " " .,, , , ,,'., , , ,., , .,. , . 1.
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the dissipation must occur in the early stage of the decay, when

turbulence inside the BL is strong enough to control the dynqmics of

the motion.

Fra these prmaises, it follows that both advection and

stratification wrk to amplify the effects of the DBL time

variations. Let us consider an anticyclonic eddy. 2he dowraelling

inside the vortex has the tendency to reduce the thickness of the

mixed layer. if the forcing flow is steady, turbulence inside the

BBL does not allow a comlete erosion of the mixed layer; but as the

forcing flow decays, turbulent activity is reduced and the BBL

decreases as a result of both vertical advection and decay. herefore

the BBL time variations are not a dissipative mechanism. _

In the case of a cyclonic flow, vertical advection and

spin-down play opposite roles in determining the thickniess of the

BBL. Thus the BBL evolves similarly to the linear case of Section .

five, and cyclonic eddies decay faster than the correspondent

anticyclonic eddies.

Analogous argumnts might be applied to the dynamics of the

flow at the edge of the vortices to explain the features of Fig. 6.3

and 6.5.

6.1.2. flow for different spatial extensions

e n-tmrical simulations described above have indicated that

vertical advection of ature and consequent thermal wind wrk

• .. ,o- ...°- ,*.-" ."t ...- * **o.o- ft ft - f~ .* °
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against dissipation by bottom friction, reducing turbulent activity -

inside the BL. FUrthetmore, vertical advection and stratification

tephasize the role of the BBL tim variations during the decay of

the flow....

Although the BOL tim variations are an Important feature for

differentiating the decay of cyclonic and anticyclonic eddies, the

thermal wind introduces a much more determinant factor in the

dynamics of the motion. Several experim nts, whose features and

paramters are described in able 6.1, have been considered.

Since the difference between eddies of opposite velocity signs have

been discussed in the previous section, we compare results relative

to cyclonic and anticyclonic flows separately.

Fig. 6.6 illustrates the evolution of the flows at the location -

of mauiman velocity, whose initial vertical profiles are depicted in

Fig. 6.7. We do not present the vertical profiles for cyclonic

flows because they are virtually identical to those of the

correspondent anticyclonic. Finally, the evolution of the

thermocline displ t is depicted in Fig. 6.8.

It is evident that experiments 3 and 7 confirm the validity of

the analytical model. If the motion is defined by a smlnl ..ssby

nmber and stratification parameter, eddies decay as homogeneous 'and

linear. Cn the other handr flows subjected to a stronger thermal

wind effect decay on a much larger tim scale.

. . . . . .r.



Experim. R(ku) D(m) Co- FE N H2
fRIW

Cyclonic Flow

1 100 29 1.5410 .75x10-2  0 0

2 100 27 1.5Sx10 2  .5x10-2  9.2x,0-2  3.410-2

3200 32 .75x10-2  .7540 2.3410' 2.340-2

4 so 21 3.40O2  .5xjlO2  3.7410' 6.4lO2

Anticyclonic flow P..

5 100 28 1.Sx,0:2 .75410-2  0 0
6 100 28 1.54102  ..54102  9.2xiO-2  3.4lO2

7 200 33 .75410-2  .754l-2  2.34102  2.340-2

8 s0 21 3.4lO .5x102  3.7x10 1  6.4lO

5Table 6.1. The characteristic dimensional scales and parameters relative
to the experiments. All the experiments have the following commuon
features: Hu4000m, IJ0.15s 41, and N=7.640 4 0. The length scale 0
is derived from the initial values of the SL thickness. See section
5.1. for definition of terms.
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In order to explain those features, a single mowdel for the

thermal wind is presented in Appendix B. 2w eodel furnishes a

diagnostic solution to the decay of nonlinear and stratified flows

when the velocity at the thermocline and the stratification

parameter s are known. As Table 6.2 confirns, the predictions are in

good agreement with the numerical simulations. Indeed, the model

does not take in account the nonlinear term of the mentum-

equation, and in deriving equation (B.4) we referred to predictions

relative to linear and LAM eneous flows.

We have already discussed how the weakness of the analytical

model of Section 5 depends on the definition of the BBL thickness and

the consequences of such definition. Nonlinearity and

stratification further complicate the evolution of the BOL.

Experiment 8 may be considered a good example of the last

statement.

The case is defined by a large stratification parameter and

W-sby number. The velocity, vh, at the top of the BEL is very small

compared with the velocity, vH, at the thermocline, and there is a

strong dowwelling inside the vortex. As the flow decays and -

turbulent activity is reduced inside the BBL, both mixed layer and

SL decrease. The ultimate configuration is a complete erosion of

the Benthic B=u y Layer and, after about three months, the flow

decays only from the effects of molecular dissipation. (Fig. 6.9).

...o.
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Predictions Values

*.Experim. v (ms'1) T (years) vH(~s vo(s'1) VH(Es' K/K0

Cyclonic flow

1 .15 1 .055 .15 .06 81%

2 .136 1.1 .11 .109 .109 56%
3 .146 1 .057 .142 .065 86%
4 .094 1.5 .139 .061 .134 23%

Anticyclonic flow

5 .15 1 .055 .15 .055 81%
6 .136 1.1 .11 .11 .10 40%
7 .146 1 .057 .142 .07 8 ~ -

8 .094 1.5 .139 .074 .137 19%

Table 6.2. Comparison between predictions and numerical computations
relative to each experiment. The velocity, vH, is computed after one
year of decay. In order to reduce'the distorsion due to our paremete-
rization of the thermll wind, the values in column 3 are computed from

*.the raltive values, v0, of column 4. The last column indicates the frac- Jtion of initial kinettIc energy which has been dissipated. See Appendix
8 for definition of terms.

7.

------------------------------------------------
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Experiment 8 also highlights the inadequacies of the diagnostic __

solution that assumes a smooth exponential decay which is not

supported by the numerical com;tations. Tlis may indicate that the

agreemnts between predictions and numrical tests are a result of a

mare coincidence rather than of the validity of the model. In

defense of the model we present the following arguments.

71,A model assumes that turbulence is determined by the value of

the velocity at the top of the BOL independent of the barotropic

component of the motion. It does not seem uneonable to postulate

that although thermal wind does affect bottom friction forces,, the

batrtropic copnent of the motion also contributes to defining

turbulence inside the DBL. This might be confirmed by Tables 6.1

and 6.2: the initial thickness of the BBL is not proportional to L

the values of the velocityvh. In our model we have underestimated

the effects of dissipation in the early stage of the decay when

* dissipation is more efficient, and spread the surplus of friction

forces along the time scale of the decay.

L 6.2. Nxistationary flow. S

We have previously considered stationary eddies and a

motionless ocean. Both assumptions are unrealistic. It is well

known that Glf Stream rings move westward (he Ring Gcoup, 1981);

Nof (1984) indicated that the translation is the result of the

balance between pressure, Coriolis and beta-effect forces that act

.-.
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over the vortex as a unity. Tides, currents, and large-scale deep -

ocean circua mton onfs onute the hypothesis of a motionless

ocean.

2meore weno assum that the vortices move westwards with a

unifom and steady velocity. 7he assmption that -the eddy is moving

is 1aortant in our analysis because the resultant new motion does

not preserve symetric properties, but adds a new source of botom

t ene, so the migration of the eddy furnishes a background

of bottom turbulence available for the spin-down of the mesoscale

flow.

Althoigh the direction of the otion has been chosen to be

consistent with the features of GUlf Stream rings, the folloing

study carot be considered an application for investigating the -

migration of eddies. 2* correct forulation of the pcoblem is

fully three-di ional and cannot be par meterized by our

two-dimensional model. In addition, the original formslation of the

problem does not require particlar conditions at the center of the

vortex. As we have discussed in Section 1, formlating the problem

in a cylindrical oonrinate system does not allow a

two.dlmensional f tleyation of the migration of the vortices. Thus

the mvarical tests described in ts section cannot be considered a

direct siulation of the decay of nonstatiory vortices, buat an

indication of the t cies induced by the migration.

k o -.- . .. 2. .
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56.2-1. Cyclonic and anticyclonic flow-

it* rrnrnrical tests diaciused in thS section cWnider the -

initial features of ixelmt 2 and 6 of Section 6.1.,r with the

vortices advected by an uniformu Oceanic curent, udw -0.0SM-1.

The evolution of tieau ditbton noar the bottom art

depicted in Fig. 6.10t and 6.11. It follows5 that the textul

interotions betiw mined layer and BM are basically preserved

inside the vortices as discuissed in the pcevioim sections. 110%wert

the background of turbulence due to the translation of the eddies

does not allow a cmipete erosion of the Denthic RuNdary Layer wbme

the anticyclanic flow wreakans =k~r the effect, of the decay. !3ider

* ~~such a cicmacthe flow mintains a well defined mixed layer#

about 30m thick, separated by a sharp interface fron the interior

stratified region. -I arthernre, the effects of the tastinare

* ~redeterinantin the eccuainof the surrowding water,

where a clear downstream wake is generated.

'me loss of symetric properties is even moeevident in the

evolution of the forcing flow. As Fig. 6.12 indicates, there is a
0

dowstramdeepening of the thermoclirie, regardless of. the initial

velocity dita uin but the location of the mam thermocline

dipaa t of cyclonic and anticyclonic floes mom downstream and

mlstrem espciey

V.



108

6.2.2. Discussion-

pirat let us recall that, according to the usual Domn lainarW

m boundary layer theorY, the inclusion of a unifoca and steady
current modif Les the structure of the boundary layer (viz, the

vertical prof ile of the velocity =R Ms witiout. altering the

decay of a mesoscale flow (viz, the i~MM velocity at the top Of the

layer). Und~er more realistic cicuAnces, we nnt always take in

acount the differences bet~ee the swtrutue of the flenthic Boundary

Layer and the dissipation induced in the forcing flow. Frhroe

the nonlinear nature of the reainhpbetween turbulent activity

and f-rcng flow does not grant that dissipation is an invariant

with respect to stationary and rxxtationary flows.

in order to understand how the taltinaffects the dynamics

of the motion, in Appendix C we derive an expression for the Mwian

velocity at the top of the BBL- We have assumed contant eddy

visoity coefficients and imp~osed a given ftm veering at the top

of the logarithmic layer. Ebr the purposes of our study, it is

conenient tbo rewrite the solution (C.3) in riondizensionalized

variables as follows

(6.2.1a) w .S + w~

(6.2.1b) wW j* (sin2o/211) Vgp

A -- N
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Figure 6.12. The displacement of the thermocline at time t=O
(dashed line) and t-12 months. (S) stationary flow, (T) non-
stationary flow. (a) anticyclonic flow, (b) cyclonic flow.
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2 2 2
(6.2.lc) WEr - -E- (U (1 - sin 2B) - EgVgCos20)Vgx,/(2(U + V )

g g g

where wES is the maan velocity relative to stationary flow, and wET

the perturbation due to the uniform translation.

With the aid of equations (6.2.1) we are able to attempt an

explanation for the features described in Section 6.2.1. However,

before proceeding in our analysis it is necessary to remer mbe

that the ultimate aim of spin-down is not a zero forcing flow or a

zero thermocline displacement, but is rather constant values of these

variables.

Let us consider an anticyclonic flow. In Fig. 6.13 we briefly

sketch how translation affects the decay of the flow with respect to

its correspondent stationary eddy. The assumption that the flow is

unperturbed upstream, and the fact that dissipation is more efficient

at the left edge assure a greater smoothing of the thernocline than

that of the correspondent stationary flow. In region B, where

friction forces are less dissipative, the thermocline preserves most

of its original gradient. The matching condition between regions A

and B leads to the downstream deepening of the thermocline. Since

Ekman pumping is more efficient at the left side of the center of the

vortex than at the right side, it follows that the location of maxima

thermocline displacement (viz, the location of zero forcing flow)

moves upstream, implying a contraction of the region of positive

forcing flow (Fig. 6.12a).

. . . . . . . . . .. . .. . . . . . . . .. . . .



The differences between regions A and B are also responsible

f or the temperature distribution near the bottom. At the left edge

of the eddy, the upwelling is stroner than at the right, leading to

* the features as depicted in Fig. 6.11.

Reverse arguments mst be applied when the flow is cyclonic.

The eddy contracts at the left edge under the influence of

- translation, and the gradient of the thermocline is not sufficiently

smo~othed inside region B. Since the friction forces are more

dissipative in region A, the thermocline deepeens slightly in the

first portion of this region (viz, the forcing flow preserves

negative values). 7hus there is a contraction of the region of

positive forcing flow and a downstream deepening of the therniocl ine

(Fig. 6.12b). Cnce more, the differences between regions A and B

lead to the temperature distribution depicted in Fig. 6.10.
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7. SLUIARY AND OCHCESIC6.

Although the primary goal of the preot research has been to o

analyze the effects of the BDnthic Boundary Layer on the decay of an

isolated vortex, the study also provides additional contributions to
* S

the understanding of the nature of turbulent motions and of the

structure of the Benthic Boundary Layer. For this reaso, we prefer

- to describe the findings of the investigation in three different

statmnts*

i) Methods of analysis of turbulent flow.

In this research we are using the principle that: *In the -

absence of a general and rigorous approach to the solution of

problems in turbulence, it is impTossible to make accurate

* quantitative predictions without relying heavily on emirical data'

(Termekes and Lumley, 1972). 7herefore our analysis develos from

the classical tmn Boundary Layer theory, corrected with the

l introduction of new elements derived from observations and

lueasunm-nts. Basically wm have depended strongly upon the

existence of a near bottou logarith.ic layer and upon a priori

knowledge of the thickness of the bottom layer and of the E.an

veering close to the wall.

It is found that the depth of the DOL furnishes an appropriate
I

reference for defining a laminar-constant eddy viscosity IL
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coefficient, which is a good estimate of the man value of the -

turbulent momntum eddy oefficient, and that the Mom veering is a

suitable masure of the friction forces that drive the motion.

7herefore we have concluded that laminar boundary layers are

mor dissipative than turbulent boundary layers of qual depth and

forced by the sam flow. 7he Sman velocity at the top of a 'BL is

proportional to the 0mn velocity of the corespondent LBL through -

a constant of proportionality which is a function of the E-a-n

veering at the rigid surface. Furthemore, the assumption that at

the rigid wall the f1w is not at an angle 0- w/4 (counterclockwise

looking down) with the forcing flow implies that dissipation is not

an invariant with respect to an uniform and steady translation of

the mesoscale flow.

OCmparisons between the model and numerical similations

confirm that this modified cM Boundary Layer solution is suitable

for deriving satisfactory diagnostic estimates of the frictional

forces associated with the Benthic Boundary Layer.

ii) 7he structure of the Benthic Boundary Layer

A numerical model based on the level 2 1/2 closure scheme of

Mellor and Yamada (1982) has been applied to investigate the

structure of the Benthic Bmxuiary Layer. The study ratifies that

a clear distinction should be made between the height of the mixed

layer and the height at which the flow is affected by the presence

of the bxndary" (Richards, 1984). More precisely, a preliminary -

. . . ....

:;. , . - ... -....... .... . .. . . . .. .... . . . . . . . . . . . . .
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analysis on horizontally flmowsous fi confirs that the most

appropriate definition of the BBL thickn~ess is the height at which

the mL-generated turbulent kinetic energy goes to zero, that the
stratification reduces the depth of the ML, and that the mi -d

layer is thickcer than DBL.

Cn the other hand, if the Benthic Boundary Layer is forced by a-

mesoscale activity, the dynamics are strongly affected by vertical

advection. A near-bottomu dowwlling has the tendency of removing

the mixed layer, but turbulence inside the layer does rot allow a

coplete erosion of the layer. The resultant balance leads to a

enthic Bundary Layer structure equivalent to that associated with

horizontally g and stably stratified flows. Cn the

contrary, a near-bottcm uwalling uilies the growth of the mixed -

layer. The BBL is then UxIiheded in an bosogeneous region and the

Benthic Boundary layer evolves as expected for horizontally

I hcsvmgenhous and neutrally stratified flows. P
Ftrzmwre, recirculation outside the mesoscale activity

ieplies different taI-erature distributions for cyclonic and

anticyclonic motions. If the motion is cyclonic, the mixed layer

receives the warm water which is adiabatically advected dowmards at

the edge of the flw. Cyclonic flows usually develop a mixed

layer w er than the mixed layer associated with equivalent

anticyclonic activities.

These findings are in good agreement with the observations on

the Madeira Abyssal Plain reported by Saunders (1983) and Thrpe

L

. . . . . . . . . . ..
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(1983). In our study, two major events occurred at the mooring

sites: the passages of an anticyclonic and a cyclonic flow at days

70 and 130 respectively, as indicated by Saunder's figure 9. In the

first case, before the transit of the flow (viz, during an upwelling

activity), stratification is weak in the whole sample colhm (about

80 m), but the depth of the mixed layer is clearly reduced when the

high pressure is over the site (viz, during a downwelling activity). -

Cn the other hand, the passage of the cyclonic flow is related tri

marked evidences of a near bottom warm front.

Another interesting place for our study is the station EEP

(390 53'N, 620 82'W) in the HEBBLE Area. This mooring site is

patticularly i portant because Foenig, Mrkmaa, and eatherly (1983)

made a complete compilation of the data from Oct. 1980 to Oct. 1981,

and Kelley (1984) represented the frontal position of the Galf Stream

and rings relative to the station for the same period of time.

Although the records present several events that might reinforce the

validity of our results, we focus our attention to the period Dec.

28, 1980 - Jan. 9, 1981.

For almost the entire length of that period, the mooring site is

clearly under the influence of the recirculation associated with a

Gulf Stream meander (viz, an upwalling region), and the Benthic

Boundary Layer presents a warm mixed layer about 50 m thick. The

region above the mixed layer is weakly stratified. On January 4,

.. . . . . . . . .. . . ... .. . . . . . . . i2 1
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K 1981 the station appears to be under the direct influences of the

Gulf Strem meander (viz, a dow rwelling region), and the mixed layer

Sbeomes older. Its thickness decreases and the region above is

I -' stratified. Furthesmote, the records onfirim that the

thicimess of the mixed layer is not proortional to the magnitud of

the forcing flow: the maximu bottom velocity occurred during

January 1-3, when the depth of the mixed layer started to decrease.

iii) The effects of the Benthic Boudary Layer on the decay of

isolated vortices.

Khe approach to the problem is to develop an analytical

model for investigating the decay of linear and L fleneou flows.

The study indicates that the spin-down occurs on a time. scale

proportional to the order of magnitude of the vertical velocity

pweed in (out) the bottom layer. During the decay, reductions of

the BBL thickness are dynamically equivalent to .an apparent

upel~ling. Furthenore, under the assumption that the BBL time

,. variations are of the sm order of magnitude as the forcing flow

variations, and for realistic values of the spatial dimensions of

the vortices, eddies contract.

Comparisons between the model and nuerical simulations confirm

the dynamic role of the SBL time variations. However, the numerical

experimnts ephasize that during the decay of the flow, the

evolution of the BSL depends strongly on the dynamic role of the

t
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byancy ce so that the relation betm SOL thickness and _

forcing f1w is co .ex and rot easily understood.

With the asawption that the fla is stably stratified and

nonlinear, the study suggests that vertical advetion of teeratur-

and conseq;unt therual wind effect work against dissipation by

bottom friction and rdu turbulent activity inside the BBL.

r ItI Mre, both vertical advection and stratification amplify the

role of the BBL tim variations during the spin-down of the eddies.

Finally, this work investiates the decay of a semoacale flow

t by an undfor and steady oceanic current. w analysis -

indicates that a translation of the msoscale flow implies a loss of

symtry of the motion features and a downatrem deepening of the

itherocline regardless of the initial velocity distribution.

Sfundamntal questions remain muawred. Are the bottom.

friction forces a capable dissipative nachania? If so, in which

regions of the ocean are they dozinant? A satisfactory answer to

these questions can be given only by aplying the results of this

work to the general ocean circulation. As representative samples we

choose three regons: the Florida Current, the Gulf Stream wa m . .

cor rings BID, and the Subtropical Gin.

-he Florida Orrent

This region has been selected as cepres ative of f w

charaterizd by a marked vertical shear for which the effects of

bottom frictions are rather wnall (Weatherly, 1972).

p..
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'Typical values of the Florida Currents are total depth H - 700 5

m, width L = 50 km, near surface velocities ranging frm 1-2ms-1,

bottom currents of about 0.3 ms-1, and a Brunt-Vaiasala frequency

SN - 7.2x10- 3s-1 (Brooks and Niiler, 1977; Weatherly, 1972). Those

features imply a Possby number c-0.5, and a stratification parameter

s - 0.94. From these parameters, we estimate that the thermal wind

implies a reduction of the bottom velocity of about 94% with respect

to the near-surface current and that therefore bottom friction

cannot be dyamically efficient.

- The Gilf Stream warm-core ring 81D.

Following Joyce (1984), the features of the ring can be

parameterized by a two layer system of radius R - 100 kin, with the

upper layer of depth Hu - 1000 m, and maximum near surface velocity

vu  1 ms-1 ; and the lower layer of depth Ht - 4000 m, and maximum

velocity vL - 0.15 ms-1 . In the lower layer, the flow appears to be

cyclonic and essentially barotropic.

Our study predicts that the BBL dissipates about 84% of the

kinetic energy contained in the lower layer during the first year of

life of the ring. If we assume that velocity distribution of the

upper layer is linear with depth, we estimate that the kinetic

energy of the lower layer is about 54% of the kinetic energy of the

upper strata. Consequently, the BL dissipates about 25% of the

kinetic energy contained in the whole water column.
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Dissipation by bottm friction oould have been an LmLortant

meachanism in the spin-downm process of ring 81D.

- 'SAe aubtropical. Gv.

Weatherly (1984) indicated that the interactions of the Qlf

Stre ad rings with the bottom dissipate somthing between 50-100%

of the ergY input by the wind in the subtropical gyro and that

ths dissipatiAon occurs in only about 20% of the total extent of the -

gyro. fE 1noff (1980) estimated the rate of energy input by the

wind for unit area to be About 2 ergo s-1.

Prom the point of view of our analysis, the subtropical gyre

can be considered a large-scale eddy-like flow. The system is

therefore represented by very smll ossby nmrber and stratification -

paranter. We might expect that bottom friction is dynamically - .

616ortant. sing the values of the area between estimated contours

of the deep kinetic energy reported in Weatherly's Table 3 and from

the modified Elman Boundary Layer solutions, we ompute the

dissipation rate, P, of the system, assuming that the thickness of

the DOL is D -0.04 vg/f and the Owsn veering is 0 = 100. It

followr that the dissipation rate per unit area in the region of the

Gulf Stream is P = 8.82 ergs C1 . Since the Glf Stream System

covens only 20% of the total area of the gyro, the rate of

dissipation for unit area in the whole subtropical gyro is about 1.7

e*M C 1 or about 86% of the energy input by the wind in the rm.-

region. 'mwrefore, our estimates are in very good agreemnt with

Weatherly's study.

ft . ...... ft• .. ............. '.7-7
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m-- In onclusion, our answer to the questions at the opening of

this discussion is: Yes, bottom friction forces are a capable

dissipative mechanism, provided that the flow is represented by a

-- small stratification parameter and a small Ibssby number. Bottom

friction is dynamically important for large scale 'ntions, such as

the subtropical gyre, or for weakly stratified mesoscale flows, such

as deep eddies. 0
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Appendix A. An approximated vertical profile of the turbulent eddy
vicity coeffiecient.

It is well known that close to the rigid surface, in the

log-layer, eddy viscosity coefficients are linear functions of height

(Krauss, 1972) and it is usually observed that they are monotonic

decreasing functions frou the top of log-layer to the top of the

total boundary layer (Wyngaard et al., 1974). Therefore, with the

boundary condition that the eddy viscosity coefficient KM goes to

zero at the rigid wall and at the top of the 'BL, it is possible to

approximate KM(z) by linear interpolation once the thickness Dlog of

the log-layer and the value Ia x - K(Dlog) are knlown.

Fran this vertical profile we deduce that:

-lDa - --
(A.1) <N> - (z)dz- 0.5 ra x -

In order to estimate the variable Dlog and Fmx, we refer to the

studies of Weatherly (1972) and Wyngaard et al. (1974), respectively:

(A.2) Dog 0.1 D

(A.3) K x = 0.02 2/-
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Thereforer

Eqyations (5.1.12) mid (5.1.19) imply:

(A.5) -IM 0.04 D2f -0.82 vXL

SIR
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Appendix B. The effect of stratification on the decay of a deep
mesocaleflow: a diagnostic solution.

Assume that the flowi is uniform in the poleward direction,

geostrophic and Boussinesq. Assume that density distribution is

under a purely advective balance.* Thus the mrotion equations might

be written as follows:

(B.la) fvzm g~ - -

(B.1b) uPX + wO2  0

Scaling the equations as in (5.1.2) leads to:

(B.2a)

(B.2b) n 0

where tilde indicates rKondimensionalized variables. Equation

(B. 2) impliies O (s), and therefore:
x

(B.3) vh -vH(l-s)

where the subscripts h and H represent values at the top of the BBL

and at the theriroline, respectively.
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*As preliminary results we conclude that the thermal wind

reduces the velocity at the top of the EBL by a factor (1-s) with

respect to the value at the free surface. Tf we assume that the

initial thickness of the BL is proportional to the magnitude of the

velocity vh1 , it follows that the time scale of the decay Ts is given

by:

- (B.4) Ts 11(V E"fkIl-sl ) 1)

Thus we estimate that the decay of the velocity vh is expressed as:

(B.5) vh - vo exp(-t/Ts )
.4.•

where the superscript o refers to initial values. From equation

(3.5) we are finally able to derive an expression for the evolution

of the flow at the theruxcline. Since we have assumed that

spin-down acts only on the barotropic component of the motion, Vg ;

S the velocities vl and vH can be written as follows:

V3: Vg + n- V0
.g

L or,

(B.6) VH ,- vh + v- v-

Substitution of (B.3), (3.5) into (8.6) leads to:

(B.7) VH - v((1-s)exp-t/Ts) + s)

t

L2:"
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Appendix C. An analytical expression for the Eauan velocity at
the top of the Bottom Boundary Layer.

Following the analysis and the symbolisus of Section 5, we

consider a laminar boundary layer of constant height D, forced by a

geostrophic flow of owiponen1ts (Ug, Vg). Generalizing the study-

presented in Section 5, the velocity components at the top of the

logarithmic layer are:

(C.la) (urv) -(ubccs(Y + ),ubsin(y +8)

where is the MoTan veering and

Z 2 1/2(C.lb) ub (coso - sin$) (U; + Vg

(C.1c) y =atan (Ug/Vg)

The solution above the logarithmic layer is:

(C.2a) U Ug l..e-9wsg) -Vge-&sing +

2 2 1
(cocSo-sin$)(U V) ' 2 ec=s (-y -)

*(C.2b) V t Ugig + Vg(l'4-cosg) +

-(os- sin) (U2 + V2 )1 2e-&sin(& - y B
g g
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whtere

(C.2c) wuiz/D

3 In deriving (C.2), we have repeatedly used the relationships:

cosny a +g (U ) si- am g/ (U~ 24 2)/

Assumne that Ugis constant; then the Eiamn velocity at the top

of the layer is given by:

(C-3) WEm-fuydz - u S

27 (sin'o + t(l-sii2s) - 2E76%cos 2 a )vg
U2 4 V2

I g

For o - /4, the n=dified spiral (C.2) and the Eanan velocity

(C.3) reduce w~ the Solution Of the classical Ocmn Boundary Layer

* theory.
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